Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors

The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2008-12, Vol.95 (11), p.5186-5192
Hauptverfasser: Rodrigues, Claudio G., Machado, Dijanah C., Chevtchenko, Sérgio F., Krasilnikov, Oleg V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5192
container_issue 11
container_start_page 5186
container_title Biophysical journal
container_volume 95
creator Rodrigues, Claudio G.
Machado, Dijanah C.
Chevtchenko, Sérgio F.
Krasilnikov, Oleg V.
description The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4 M KCl than in 1 M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores.
doi_str_mv 10.1529/biophysj.108.140814
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2586564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349508789446</els_id><sourcerecordid>69808560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-3c4ed8d17f0b6d5f2e61376720ac5dfa6a87be3e771dabb74daa5570f5cbb6623</originalsourceid><addsrcrecordid>eNp9kUlvEzEUgC0EoqHwC5CQT_Q0wZ7xNgeQUFpa1FIQy9ny8oa4mrGDPamUf4-rhKWXnry87y32h9BLSpaUt_0bG9JmvSs3S0rUkjKiKHuEFpSztiFEicdoQQgRTcd6foSelXJDCG05oU_REVWK8L4VC_T1E7i1iaFMOA34cjXis1jPDiaIMw4Rn8IMbg4p3sWvU6y74PCXNO4myAXbHb42MW1SBvwNYkm5PEdPBjMWeHFYj9GPD2ffVxfN1efzj6v3V41jqp-bzjHwylM5ECs8H1oQtJNCtsQ47gcjjJIWOpCSemOtZN4YziUZuLNWiLY7Ru_2dTdbO4F3deBsRr3JYTJ5p5MJ-n4khrX-mW51y5XggtUCJ4cCOf3aQpn1FIqDcTQR0rZoJRjrekl5JV8_SIpeEcUFqWC3B11OpWQY_o5Dib6zpv9YqxdK763VrFf_v-RfzkFTBd7uAaj_eRsg6-ICVEs-5GpH-xQebPAbdXmskA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69808560</pqid></control><display><type>article</type><title>Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rodrigues, Claudio G. ; Machado, Dijanah C. ; Chevtchenko, Sérgio F. ; Krasilnikov, Oleg V.</creator><creatorcontrib>Rodrigues, Claudio G. ; Machado, Dijanah C. ; Chevtchenko, Sérgio F. ; Krasilnikov, Oleg V.</creatorcontrib><description>The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4 M KCl than in 1 M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.108.140814</identifier><identifier>PMID: 18805926</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Toxins - chemistry ; Bacterial Toxins - metabolism ; Channels, Receptors, and Electrical Signaling ; Electric Conductivity ; Glycols ; Hemolysin Proteins - chemistry ; Hemolysin Proteins - metabolism ; Kinetics ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Nonionic ; Polyethylene Glycols - analysis ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - metabolism ; Porosity ; Potassium Chloride - pharmacology ; Sensors ; Stochastic Processes ; Thermodynamics ; Time Factors ; Voltage</subject><ispartof>Biophysical journal, 2008-12, Vol.95 (11), p.5186-5192</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-3c4ed8d17f0b6d5f2e61376720ac5dfa6a87be3e771dabb74daa5570f5cbb6623</citedby><cites>FETCH-LOGICAL-c489t-3c4ed8d17f0b6d5f2e61376720ac5dfa6a87be3e771dabb74daa5570f5cbb6623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586564/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.108.140814$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27923,27924,45994,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18805926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues, Claudio G.</creatorcontrib><creatorcontrib>Machado, Dijanah C.</creatorcontrib><creatorcontrib>Chevtchenko, Sérgio F.</creatorcontrib><creatorcontrib>Krasilnikov, Oleg V.</creatorcontrib><title>Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4 M KCl than in 1 M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores.</description><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - metabolism</subject><subject>Channels, Receptors, and Electrical Signaling</subject><subject>Electric Conductivity</subject><subject>Glycols</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Hemolysin Proteins - metabolism</subject><subject>Kinetics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nonionic</subject><subject>Polyethylene Glycols - analysis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - metabolism</subject><subject>Porosity</subject><subject>Potassium Chloride - pharmacology</subject><subject>Sensors</subject><subject>Stochastic Processes</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><subject>Voltage</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUlvEzEUgC0EoqHwC5CQT_Q0wZ7xNgeQUFpa1FIQy9ny8oa4mrGDPamUf4-rhKWXnry87y32h9BLSpaUt_0bG9JmvSs3S0rUkjKiKHuEFpSztiFEicdoQQgRTcd6foSelXJDCG05oU_REVWK8L4VC_T1E7i1iaFMOA34cjXis1jPDiaIMw4Rn8IMbg4p3sWvU6y74PCXNO4myAXbHb42MW1SBvwNYkm5PEdPBjMWeHFYj9GPD2ffVxfN1efzj6v3V41jqp-bzjHwylM5ECs8H1oQtJNCtsQ47gcjjJIWOpCSemOtZN4YziUZuLNWiLY7Ru_2dTdbO4F3deBsRr3JYTJ5p5MJ-n4khrX-mW51y5XggtUCJ4cCOf3aQpn1FIqDcTQR0rZoJRjrekl5JV8_SIpeEcUFqWC3B11OpWQY_o5Dib6zpv9YqxdK763VrFf_v-RfzkFTBd7uAaj_eRsg6-ICVEs-5GpH-xQebPAbdXmskA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Rodrigues, Claudio G.</creator><creator>Machado, Dijanah C.</creator><creator>Chevtchenko, Sérgio F.</creator><creator>Krasilnikov, Oleg V.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors</title><author>Rodrigues, Claudio G. ; Machado, Dijanah C. ; Chevtchenko, Sérgio F. ; Krasilnikov, Oleg V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-3c4ed8d17f0b6d5f2e61376720ac5dfa6a87be3e771dabb74daa5570f5cbb6623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - metabolism</topic><topic>Channels, Receptors, and Electrical Signaling</topic><topic>Electric Conductivity</topic><topic>Glycols</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Hemolysin Proteins - metabolism</topic><topic>Kinetics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nonionic</topic><topic>Polyethylene Glycols - analysis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - metabolism</topic><topic>Porosity</topic><topic>Potassium Chloride - pharmacology</topic><topic>Sensors</topic><topic>Stochastic Processes</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Claudio G.</creatorcontrib><creatorcontrib>Machado, Dijanah C.</creatorcontrib><creatorcontrib>Chevtchenko, Sérgio F.</creatorcontrib><creatorcontrib>Krasilnikov, Oleg V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Claudio G.</au><au>Machado, Dijanah C.</au><au>Chevtchenko, Sérgio F.</au><au>Krasilnikov, Oleg V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>95</volume><issue>11</issue><spage>5186</spage><epage>5192</epage><pages>5186-5192</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4 M KCl than in 1 M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18805926</pmid><doi>10.1529/biophysj.108.140814</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2008-12, Vol.95 (11), p.5186-5192
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2586564
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bacterial Toxins - chemistry
Bacterial Toxins - metabolism
Channels, Receptors, and Electrical Signaling
Electric Conductivity
Glycols
Hemolysin Proteins - chemistry
Hemolysin Proteins - metabolism
Kinetics
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
Nonionic
Polyethylene Glycols - analysis
Polyethylene Glycols - chemistry
Polyethylene Glycols - metabolism
Porosity
Potassium Chloride - pharmacology
Sensors
Stochastic Processes
Thermodynamics
Time Factors
Voltage
title Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20KCl%20Enhancement%20in%20Detection%20of%20Nonionic%20Polymers%20by%20Nanopore%20Sensors&rft.jtitle=Biophysical%20journal&rft.au=Rodrigues,%20Claudio%20G.&rft.date=2008-12-01&rft.volume=95&rft.issue=11&rft.spage=5186&rft.epage=5192&rft.pages=5186-5192&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.108.140814&rft_dat=%3Cproquest_pubme%3E69808560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69808560&rft_id=info:pmid/18805926&rft_els_id=S0006349508789446&rfr_iscdi=true