Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors
The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2008-12, Vol.95 (11), p.5186-5192 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5192 |
---|---|
container_issue | 11 |
container_start_page | 5186 |
container_title | Biophysical journal |
container_volume | 95 |
creator | Rodrigues, Claudio G. Machado, Dijanah C. Chevtchenko, Sérgio F. Krasilnikov, Oleg V. |
description | The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary
α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4
M KCl than in 1
M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores. |
doi_str_mv | 10.1529/biophysj.108.140814 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2586564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349508789446</els_id><sourcerecordid>69808560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-3c4ed8d17f0b6d5f2e61376720ac5dfa6a87be3e771dabb74daa5570f5cbb6623</originalsourceid><addsrcrecordid>eNp9kUlvEzEUgC0EoqHwC5CQT_Q0wZ7xNgeQUFpa1FIQy9ny8oa4mrGDPamUf4-rhKWXnry87y32h9BLSpaUt_0bG9JmvSs3S0rUkjKiKHuEFpSztiFEicdoQQgRTcd6foSelXJDCG05oU_REVWK8L4VC_T1E7i1iaFMOA34cjXis1jPDiaIMw4Rn8IMbg4p3sWvU6y74PCXNO4myAXbHb42MW1SBvwNYkm5PEdPBjMWeHFYj9GPD2ffVxfN1efzj6v3V41jqp-bzjHwylM5ECs8H1oQtJNCtsQ47gcjjJIWOpCSemOtZN4YziUZuLNWiLY7Ru_2dTdbO4F3deBsRr3JYTJ5p5MJ-n4khrX-mW51y5XggtUCJ4cCOf3aQpn1FIqDcTQR0rZoJRjrekl5JV8_SIpeEcUFqWC3B11OpWQY_o5Dib6zpv9YqxdK763VrFf_v-RfzkFTBd7uAaj_eRsg6-ICVEs-5GpH-xQebPAbdXmskA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69808560</pqid></control><display><type>article</type><title>Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rodrigues, Claudio G. ; Machado, Dijanah C. ; Chevtchenko, Sérgio F. ; Krasilnikov, Oleg V.</creator><creatorcontrib>Rodrigues, Claudio G. ; Machado, Dijanah C. ; Chevtchenko, Sérgio F. ; Krasilnikov, Oleg V.</creatorcontrib><description>The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary
α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4
M KCl than in 1
M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.108.140814</identifier><identifier>PMID: 18805926</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Toxins - chemistry ; Bacterial Toxins - metabolism ; Channels, Receptors, and Electrical Signaling ; Electric Conductivity ; Glycols ; Hemolysin Proteins - chemistry ; Hemolysin Proteins - metabolism ; Kinetics ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Nonionic ; Polyethylene Glycols - analysis ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - metabolism ; Porosity ; Potassium Chloride - pharmacology ; Sensors ; Stochastic Processes ; Thermodynamics ; Time Factors ; Voltage</subject><ispartof>Biophysical journal, 2008-12, Vol.95 (11), p.5186-5192</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-3c4ed8d17f0b6d5f2e61376720ac5dfa6a87be3e771dabb74daa5570f5cbb6623</citedby><cites>FETCH-LOGICAL-c489t-3c4ed8d17f0b6d5f2e61376720ac5dfa6a87be3e771dabb74daa5570f5cbb6623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586564/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.108.140814$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27923,27924,45994,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18805926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues, Claudio G.</creatorcontrib><creatorcontrib>Machado, Dijanah C.</creatorcontrib><creatorcontrib>Chevtchenko, Sérgio F.</creatorcontrib><creatorcontrib>Krasilnikov, Oleg V.</creatorcontrib><title>Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary
α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4
M KCl than in 1
M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores.</description><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - metabolism</subject><subject>Channels, Receptors, and Electrical Signaling</subject><subject>Electric Conductivity</subject><subject>Glycols</subject><subject>Hemolysin Proteins - chemistry</subject><subject>Hemolysin Proteins - metabolism</subject><subject>Kinetics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nonionic</subject><subject>Polyethylene Glycols - analysis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - metabolism</subject><subject>Porosity</subject><subject>Potassium Chloride - pharmacology</subject><subject>Sensors</subject><subject>Stochastic Processes</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><subject>Voltage</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUlvEzEUgC0EoqHwC5CQT_Q0wZ7xNgeQUFpa1FIQy9ny8oa4mrGDPamUf4-rhKWXnry87y32h9BLSpaUt_0bG9JmvSs3S0rUkjKiKHuEFpSztiFEicdoQQgRTcd6foSelXJDCG05oU_REVWK8L4VC_T1E7i1iaFMOA34cjXis1jPDiaIMw4Rn8IMbg4p3sWvU6y74PCXNO4myAXbHb42MW1SBvwNYkm5PEdPBjMWeHFYj9GPD2ffVxfN1efzj6v3V41jqp-bzjHwylM5ECs8H1oQtJNCtsQ47gcjjJIWOpCSemOtZN4YziUZuLNWiLY7Ru_2dTdbO4F3deBsRr3JYTJ5p5MJ-n4khrX-mW51y5XggtUCJ4cCOf3aQpn1FIqDcTQR0rZoJRjrekl5JV8_SIpeEcUFqWC3B11OpWQY_o5Dib6zpv9YqxdK763VrFf_v-RfzkFTBd7uAaj_eRsg6-ICVEs-5GpH-xQebPAbdXmskA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Rodrigues, Claudio G.</creator><creator>Machado, Dijanah C.</creator><creator>Chevtchenko, Sérgio F.</creator><creator>Krasilnikov, Oleg V.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20081201</creationdate><title>Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors</title><author>Rodrigues, Claudio G. ; Machado, Dijanah C. ; Chevtchenko, Sérgio F. ; Krasilnikov, Oleg V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-3c4ed8d17f0b6d5f2e61376720ac5dfa6a87be3e771dabb74daa5570f5cbb6623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - metabolism</topic><topic>Channels, Receptors, and Electrical Signaling</topic><topic>Electric Conductivity</topic><topic>Glycols</topic><topic>Hemolysin Proteins - chemistry</topic><topic>Hemolysin Proteins - metabolism</topic><topic>Kinetics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nonionic</topic><topic>Polyethylene Glycols - analysis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - metabolism</topic><topic>Porosity</topic><topic>Potassium Chloride - pharmacology</topic><topic>Sensors</topic><topic>Stochastic Processes</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Claudio G.</creatorcontrib><creatorcontrib>Machado, Dijanah C.</creatorcontrib><creatorcontrib>Chevtchenko, Sérgio F.</creatorcontrib><creatorcontrib>Krasilnikov, Oleg V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Claudio G.</au><au>Machado, Dijanah C.</au><au>Chevtchenko, Sérgio F.</au><au>Krasilnikov, Oleg V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-12-01</date><risdate>2008</risdate><volume>95</volume><issue>11</issue><spage>5186</spage><epage>5192</epage><pages>5186-5192</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary
α-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4
M KCl than in 1
M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18805926</pmid><doi>10.1529/biophysj.108.140814</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2008-12, Vol.95 (11), p.5186-5192 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2586564 |
source | MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bacterial Toxins - chemistry Bacterial Toxins - metabolism Channels, Receptors, and Electrical Signaling Electric Conductivity Glycols Hemolysin Proteins - chemistry Hemolysin Proteins - metabolism Kinetics Nanocomposites Nanomaterials Nanostructure Nanotechnology Nonionic Polyethylene Glycols - analysis Polyethylene Glycols - chemistry Polyethylene Glycols - metabolism Porosity Potassium Chloride - pharmacology Sensors Stochastic Processes Thermodynamics Time Factors Voltage |
title | Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20KCl%20Enhancement%20in%20Detection%20of%20Nonionic%20Polymers%20by%20Nanopore%20Sensors&rft.jtitle=Biophysical%20journal&rft.au=Rodrigues,%20Claudio%20G.&rft.date=2008-12-01&rft.volume=95&rft.issue=11&rft.spage=5186&rft.epage=5192&rft.pages=5186-5192&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.108.140814&rft_dat=%3Cproquest_pubme%3E69808560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69808560&rft_id=info:pmid/18805926&rft_els_id=S0006349508789446&rfr_iscdi=true |