Image-based evaluation of the molecular events underlying HC11 mammary epithelial cell differentiation
We have developed an image-based technique for signal pathway analysis, target validation, and compound screening related to mammary epithelial cell differentiation. This technique used the advantages of optical imaging and the HC11-Lux model system. The HC11-Lux cell line is a subclone of HC11 mamm...
Gespeichert in:
Veröffentlicht in: | Analytical biochemistry 2008-11, Vol.382 (2), p.122-128 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed an image-based technique for signal pathway analysis, target validation, and compound screening related to mammary epithelial cell differentiation. This technique used the advantages of optical imaging and the HC11-Lux model system. The HC11-Lux cell line is a subclone of HC11 mammary epithelial cells transfected stably with a luciferase construct of the β-casein gene promoter (p-344/-1βc-Lux). The promoter activity was imaged optically in real time following lactogenic induction. The imaging signal intensity was closely correlated with that measured using a luminometer following protein extraction (
R
=
0.99,
P
<
0.0001) and consistent with the messenger RNA (mRNA) level of the endogenous β -casein gene. Using this technique, we examined the roles of JAK2/Stat5A, Raf-1/MEK/MAKP, and PI3K/Akt signal pathways with respect to differentiation. The imaging studies showed that treatment of the cells with epidermal growth factor (EGF), AG490 (JAK2-specific inhibitor), and LY294002 (PI3K-specific inhibitor) blocked lactogenic differentiation in a dose-dependent manner. PD98059 (MEK-specific inhibitor) could reverse EGF-mediated differentiation arrest. These results indicate that these pathways are essential in cell differentiation. This simple, sensitive, and reproducible technique permits visualization and real-time evaluation of the molecular events related to milk protein production. It can be adopted for high-throughput screening of small molecules for their effects on mammary epithelial cell growth, differentiation, and carcinogenesis. |
---|---|
ISSN: | 0003-2697 1096-0309 |
DOI: | 10.1016/j.ab.2008.08.004 |