CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules

CLASP proteins associate with either the plus ends or sidewalls of microtubules depending on the subcellular location and cell type. In plant cells, CLASP's distribution along the full length of microtubules corresponds with the uniform anchorage of microtubules to the cell cortex. Using live c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2008-11, Vol.19 (11), p.4730-4737
Hauptverfasser: Ambrose, J Christian, Wasteneys, Geoffrey O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4737
container_issue 11
container_start_page 4730
container_title Molecular biology of the cell
container_volume 19
creator Ambrose, J Christian
Wasteneys, Geoffrey O
description CLASP proteins associate with either the plus ends or sidewalls of microtubules depending on the subcellular location and cell type. In plant cells, CLASP's distribution along the full length of microtubules corresponds with the uniform anchorage of microtubules to the cell cortex. Using live cell imaging, we show here that loss of CLASP in Arabidopsis thaliana results in partial detachment of microtubules from the cortex. The detached portions undergo extensive waving, distortion, and changes in orientation, particularly when exposed to the forces of cytoplasmic streaming. These deviations from the normal linear polymerization trajectories increase the likelihood of intermicrotubule encounters that are favorable for subsequent bundle formation. Consistent with this, cortical microtubules in clasp-1 leaf epidermal cells are hyper-parallel. On the basis of these data, we identify a novel mechanism where modulation of CLASP activity governs microtubule-cortex attachment, thereby contributing to self-organization of cortical microtubules.
doi_str_mv 10.1091/mbc.E08-06-0665
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2575154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69726564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-9fea9e76f25c81997dbc0d925a361a0bf499103bc226c71cfac9aa86289dcaa33</originalsourceid><addsrcrecordid>eNpVUU1LxDAQDaK4unr2Jj1565qkTdpcBFnWD1hQUM9hmiZrpG3WJBX119v9QFcYmIH35s0bHkJnBE8IFuSyrdRkhssU86E420NHRGQizVnJ94cZM5ESRvMROg7hDWOS57w4RCNSFoRjlh-hejq_fnpMWlf3DUQdktYq72Jf9Y1OlfNRfya2i9qDitZ1Sd172y2SoBuTOr-Azn7DGnAmAaW76F1wLTS7OuEEHRhogj7d9jF6uZk9T-_S-cPt_fR6niqWsZgKo0HoghvKVEmEKOpK4VpQBhkngCuTC0FwVilKuSqIMqAEQMlpKWoFkGVjdLXRXfZVq-u1HWjk0tsW_Jd0YOV_pLOvcuE-JGUFIywfBC62At699zpE2dqgdNNAp10fJBcF5YyviJcb4vBkCF6b3yMEy1UyckhGalxKzOUqmWHjfNfbH38bRfYDsACOyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69726564</pqid></control><display><type>article</type><title>CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ambrose, J Christian ; Wasteneys, Geoffrey O</creator><contributor>Drubin, David G.</contributor><creatorcontrib>Ambrose, J Christian ; Wasteneys, Geoffrey O ; Drubin, David G.</creatorcontrib><description>CLASP proteins associate with either the plus ends or sidewalls of microtubules depending on the subcellular location and cell type. In plant cells, CLASP's distribution along the full length of microtubules corresponds with the uniform anchorage of microtubules to the cell cortex. Using live cell imaging, we show here that loss of CLASP in Arabidopsis thaliana results in partial detachment of microtubules from the cortex. The detached portions undergo extensive waving, distortion, and changes in orientation, particularly when exposed to the forces of cytoplasmic streaming. These deviations from the normal linear polymerization trajectories increase the likelihood of intermicrotubule encounters that are favorable for subsequent bundle formation. Consistent with this, cortical microtubules in clasp-1 leaf epidermal cells are hyper-parallel. On the basis of these data, we identify a novel mechanism where modulation of CLASP activity governs microtubule-cortex attachment, thereby contributing to self-organization of cortical microtubules.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E08-06-0665</identifier><identifier>PMID: 18716054</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Arabidopsis - metabolism ; Arabidopsis Proteins - metabolism ; Centrosome - metabolism ; Cotyledon - cytology ; Cotyledon - metabolism ; Microtubule-Associated Proteins - deficiency ; Microtubule-Associated Proteins - metabolism ; Microtubules - metabolism ; Models, Biological ; Mutation - genetics ; Plant Epidermis - cytology ; Plant Epidermis - metabolism</subject><ispartof>Molecular biology of the cell, 2008-11, Vol.19 (11), p.4730-4737</ispartof><rights>2008 by The American Society for Cell Biology 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-9fea9e76f25c81997dbc0d925a361a0bf499103bc226c71cfac9aa86289dcaa33</citedby><cites>FETCH-LOGICAL-c535t-9fea9e76f25c81997dbc0d925a361a0bf499103bc226c71cfac9aa86289dcaa33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575154/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575154/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18716054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Drubin, David G.</contributor><creatorcontrib>Ambrose, J Christian</creatorcontrib><creatorcontrib>Wasteneys, Geoffrey O</creatorcontrib><title>CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>CLASP proteins associate with either the plus ends or sidewalls of microtubules depending on the subcellular location and cell type. In plant cells, CLASP's distribution along the full length of microtubules corresponds with the uniform anchorage of microtubules to the cell cortex. Using live cell imaging, we show here that loss of CLASP in Arabidopsis thaliana results in partial detachment of microtubules from the cortex. The detached portions undergo extensive waving, distortion, and changes in orientation, particularly when exposed to the forces of cytoplasmic streaming. These deviations from the normal linear polymerization trajectories increase the likelihood of intermicrotubule encounters that are favorable for subsequent bundle formation. Consistent with this, cortical microtubules in clasp-1 leaf epidermal cells are hyper-parallel. On the basis of these data, we identify a novel mechanism where modulation of CLASP activity governs microtubule-cortex attachment, thereby contributing to self-organization of cortical microtubules.</description><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Centrosome - metabolism</subject><subject>Cotyledon - cytology</subject><subject>Cotyledon - metabolism</subject><subject>Microtubule-Associated Proteins - deficiency</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Models, Biological</subject><subject>Mutation - genetics</subject><subject>Plant Epidermis - cytology</subject><subject>Plant Epidermis - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1LxDAQDaK4unr2Jj1565qkTdpcBFnWD1hQUM9hmiZrpG3WJBX119v9QFcYmIH35s0bHkJnBE8IFuSyrdRkhssU86E420NHRGQizVnJ94cZM5ESRvMROg7hDWOS57w4RCNSFoRjlh-hejq_fnpMWlf3DUQdktYq72Jf9Y1OlfNRfya2i9qDitZ1Sd172y2SoBuTOr-Azn7DGnAmAaW76F1wLTS7OuEEHRhogj7d9jF6uZk9T-_S-cPt_fR6niqWsZgKo0HoghvKVEmEKOpK4VpQBhkngCuTC0FwVilKuSqIMqAEQMlpKWoFkGVjdLXRXfZVq-u1HWjk0tsW_Jd0YOV_pLOvcuE-JGUFIywfBC62At699zpE2dqgdNNAp10fJBcF5YyviJcb4vBkCF6b3yMEy1UyckhGalxKzOUqmWHjfNfbH38bRfYDsACOyg</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Ambrose, J Christian</creator><creator>Wasteneys, Geoffrey O</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200811</creationdate><title>CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules</title><author>Ambrose, J Christian ; Wasteneys, Geoffrey O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-9fea9e76f25c81997dbc0d925a361a0bf499103bc226c71cfac9aa86289dcaa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Centrosome - metabolism</topic><topic>Cotyledon - cytology</topic><topic>Cotyledon - metabolism</topic><topic>Microtubule-Associated Proteins - deficiency</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Models, Biological</topic><topic>Mutation - genetics</topic><topic>Plant Epidermis - cytology</topic><topic>Plant Epidermis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrose, J Christian</creatorcontrib><creatorcontrib>Wasteneys, Geoffrey O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrose, J Christian</au><au>Wasteneys, Geoffrey O</au><au>Drubin, David G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2008-11</date><risdate>2008</risdate><volume>19</volume><issue>11</issue><spage>4730</spage><epage>4737</epage><pages>4730-4737</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>CLASP proteins associate with either the plus ends or sidewalls of microtubules depending on the subcellular location and cell type. In plant cells, CLASP's distribution along the full length of microtubules corresponds with the uniform anchorage of microtubules to the cell cortex. Using live cell imaging, we show here that loss of CLASP in Arabidopsis thaliana results in partial detachment of microtubules from the cortex. The detached portions undergo extensive waving, distortion, and changes in orientation, particularly when exposed to the forces of cytoplasmic streaming. These deviations from the normal linear polymerization trajectories increase the likelihood of intermicrotubule encounters that are favorable for subsequent bundle formation. Consistent with this, cortical microtubules in clasp-1 leaf epidermal cells are hyper-parallel. On the basis of these data, we identify a novel mechanism where modulation of CLASP activity governs microtubule-cortex attachment, thereby contributing to self-organization of cortical microtubules.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>18716054</pmid><doi>10.1091/mbc.E08-06-0665</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2008-11, Vol.19 (11), p.4730-4737
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2575154
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Centrosome - metabolism
Cotyledon - cytology
Cotyledon - metabolism
Microtubule-Associated Proteins - deficiency
Microtubule-Associated Proteins - metabolism
Microtubules - metabolism
Models, Biological
Mutation - genetics
Plant Epidermis - cytology
Plant Epidermis - metabolism
title CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLASP%20modulates%20microtubule-cortex%20interaction%20during%20self-organization%20of%20acentrosomal%20microtubules&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Ambrose,%20J%20Christian&rft.date=2008-11&rft.volume=19&rft.issue=11&rft.spage=4730&rft.epage=4737&rft.pages=4730-4737&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E08-06-0665&rft_dat=%3Cproquest_pubme%3E69726564%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69726564&rft_id=info:pmid/18716054&rfr_iscdi=true