WND-CHARM: Multi-purpose image classification using compound image transforms

We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2008-08, Vol.29 (11), p.1684-1693
Hauptverfasser: Orlov, Nikita, Shamir, Lior, Macura, Tomasz, Johnston, Josiah, Eckley, D. Mark, Goldberg, Ilya G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1693
container_issue 11
container_start_page 1684
container_title Pattern recognition letters
container_volume 29
creator Orlov, Nikita
Shamir, Lior
Macura, Tomasz
Johnston, Josiah
Eckley, D. Mark
Goldberg, Ilya G.
description We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from http://www.openmicroscopy.org.
doi_str_mv 10.1016/j.patrec.2008.04.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2573471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865508001530</els_id><sourcerecordid>1835542934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-44819915703393d6de8e114159c7fa906f1701c357a2e5d552456ed83b8fcfb93</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCP0AoFyQuCXZsJzYHpGopFKkLEgJxtLzOePEqiYMnqcS_x9VGLVw4-eBv3rx5j5AXjFaMsubNsZrsnMBVNaWqoqKijD8iG6baumy5EI_JJmNtqRopz8g54pFS2nCtnpIzprRUnLIN2f34_L7cXl9-3b0tdks_h3Ja0hQRijDYAxSut4jBB2fnEMdiwTAeCheHKS5jtzJzsiP6mAZ8Rp542yM8X98L8v3D1bftdXnz5eOn7eVN6aTUcymEYloz2VLONe-aDhQwJpjUrvVW08azljLHZWtrkJ2UtZANdIrvlXd-r_kFeXfSnZb9AJ2DMXvozZSyofTbRBvMvz9j-GkO8dbUMkfTsizwehVI8dcCOJshoIO-tyPEBQ1TXEpRay4yKk6oSxExgb9fw6i5a8IczakJc9eEocLkJvLYy78tPgyt0Wfg1QpYdLb3OUQX8J6rqaSK6-bhVsiB3gZIBl2A0UEX8s7ZdDH838kfQZapBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835542934</pqid></control><display><type>article</type><title>WND-CHARM: Multi-purpose image classification using compound image transforms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Orlov, Nikita ; Shamir, Lior ; Macura, Tomasz ; Johnston, Josiah ; Eckley, D. Mark ; Goldberg, Ilya G.</creator><creatorcontrib>Orlov, Nikita ; Shamir, Lior ; Macura, Tomasz ; Johnston, Josiah ; Eckley, D. Mark ; Goldberg, Ilya G.</creatorcontrib><description>We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from http://www.openmicroscopy.org.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2008.04.013</identifier><identifier>PMID: 18958301</identifier><identifier>CODEN: PRLEDG</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Biological imaging ; Exact sciences and technology ; High dimensional classification ; Image classification ; Image features ; Image processing ; Information, signal and communications theory ; Miscellaneous ; Pattern recognition ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Telecommunications and information theory</subject><ispartof>Pattern recognition letters, 2008-08, Vol.29 (11), p.1684-1693</ispartof><rights>2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-44819915703393d6de8e114159c7fa906f1701c357a2e5d552456ed83b8fcfb93</citedby><cites>FETCH-LOGICAL-c559t-44819915703393d6de8e114159c7fa906f1701c357a2e5d552456ed83b8fcfb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167865508001530$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20508396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18958301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orlov, Nikita</creatorcontrib><creatorcontrib>Shamir, Lior</creatorcontrib><creatorcontrib>Macura, Tomasz</creatorcontrib><creatorcontrib>Johnston, Josiah</creatorcontrib><creatorcontrib>Eckley, D. Mark</creatorcontrib><creatorcontrib>Goldberg, Ilya G.</creatorcontrib><title>WND-CHARM: Multi-purpose image classification using compound image transforms</title><title>Pattern recognition letters</title><addtitle>Pattern Recognit Lett</addtitle><description>We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from http://www.openmicroscopy.org.</description><subject>Applied sciences</subject><subject>Biological imaging</subject><subject>Exact sciences and technology</subject><subject>High dimensional classification</subject><subject>Image classification</subject><subject>Image features</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Miscellaneous</subject><subject>Pattern recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EotvCP0AoFyQuCXZsJzYHpGopFKkLEgJxtLzOePEqiYMnqcS_x9VGLVw4-eBv3rx5j5AXjFaMsubNsZrsnMBVNaWqoqKijD8iG6baumy5EI_JJmNtqRopz8g54pFS2nCtnpIzprRUnLIN2f34_L7cXl9-3b0tdks_h3Ja0hQRijDYAxSut4jBB2fnEMdiwTAeCheHKS5jtzJzsiP6mAZ8Rp542yM8X98L8v3D1bftdXnz5eOn7eVN6aTUcymEYloz2VLONe-aDhQwJpjUrvVW08azljLHZWtrkJ2UtZANdIrvlXd-r_kFeXfSnZb9AJ2DMXvozZSyofTbRBvMvz9j-GkO8dbUMkfTsizwehVI8dcCOJshoIO-tyPEBQ1TXEpRay4yKk6oSxExgb9fw6i5a8IczakJc9eEocLkJvLYy78tPgyt0Wfg1QpYdLb3OUQX8J6rqaSK6-bhVsiB3gZIBl2A0UEX8s7ZdDH838kfQZapBw</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Orlov, Nikita</creator><creator>Shamir, Lior</creator><creator>Macura, Tomasz</creator><creator>Johnston, Josiah</creator><creator>Eckley, D. Mark</creator><creator>Goldberg, Ilya G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080801</creationdate><title>WND-CHARM: Multi-purpose image classification using compound image transforms</title><author>Orlov, Nikita ; Shamir, Lior ; Macura, Tomasz ; Johnston, Josiah ; Eckley, D. Mark ; Goldberg, Ilya G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-44819915703393d6de8e114159c7fa906f1701c357a2e5d552456ed83b8fcfb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Biological imaging</topic><topic>Exact sciences and technology</topic><topic>High dimensional classification</topic><topic>Image classification</topic><topic>Image features</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Miscellaneous</topic><topic>Pattern recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlov, Nikita</creatorcontrib><creatorcontrib>Shamir, Lior</creatorcontrib><creatorcontrib>Macura, Tomasz</creatorcontrib><creatorcontrib>Johnston, Josiah</creatorcontrib><creatorcontrib>Eckley, D. Mark</creatorcontrib><creatorcontrib>Goldberg, Ilya G.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlov, Nikita</au><au>Shamir, Lior</au><au>Macura, Tomasz</au><au>Johnston, Josiah</au><au>Eckley, D. Mark</au><au>Goldberg, Ilya G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WND-CHARM: Multi-purpose image classification using compound image transforms</atitle><jtitle>Pattern recognition letters</jtitle><addtitle>Pattern Recognit Lett</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>29</volume><issue>11</issue><spage>1684</spage><epage>1693</epage><pages>1684-1693</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><coden>PRLEDG</coden><abstract>We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from http://www.openmicroscopy.org.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>18958301</pmid><doi>10.1016/j.patrec.2008.04.013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2008-08, Vol.29 (11), p.1684-1693
issn 0167-8655
1872-7344
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2573471
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Biological imaging
Exact sciences and technology
High dimensional classification
Image classification
Image features
Image processing
Information, signal and communications theory
Miscellaneous
Pattern recognition
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Telecommunications and information theory
title WND-CHARM: Multi-purpose image classification using compound image transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WND-CHARM:%20Multi-purpose%20image%20classification%20using%20compound%20image%20transforms&rft.jtitle=Pattern%20recognition%20letters&rft.au=Orlov,%20Nikita&rft.date=2008-08-01&rft.volume=29&rft.issue=11&rft.spage=1684&rft.epage=1693&rft.pages=1684-1693&rft.issn=0167-8655&rft.eissn=1872-7344&rft.coden=PRLEDG&rft_id=info:doi/10.1016/j.patrec.2008.04.013&rft_dat=%3Cproquest_pubme%3E1835542934%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835542934&rft_id=info:pmid/18958301&rft_els_id=S0167865508001530&rfr_iscdi=true