WND-CHARM: Multi-purpose image classification using compound image transforms
We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2008-08, Vol.29 (11), p.1684-1693 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1693 |
---|---|
container_issue | 11 |
container_start_page | 1684 |
container_title | Pattern recognition letters |
container_volume | 29 |
creator | Orlov, Nikita Shamir, Lior Macura, Tomasz Johnston, Josiah Eckley, D. Mark Goldberg, Ilya G. |
description | We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from
http://www.openmicroscopy.org. |
doi_str_mv | 10.1016/j.patrec.2008.04.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2573471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865508001530</els_id><sourcerecordid>1835542934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-44819915703393d6de8e114159c7fa906f1701c357a2e5d552456ed83b8fcfb93</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCP0AoFyQuCXZsJzYHpGopFKkLEgJxtLzOePEqiYMnqcS_x9VGLVw4-eBv3rx5j5AXjFaMsubNsZrsnMBVNaWqoqKijD8iG6baumy5EI_JJmNtqRopz8g54pFS2nCtnpIzprRUnLIN2f34_L7cXl9-3b0tdks_h3Ja0hQRijDYAxSut4jBB2fnEMdiwTAeCheHKS5jtzJzsiP6mAZ8Rp542yM8X98L8v3D1bftdXnz5eOn7eVN6aTUcymEYloz2VLONe-aDhQwJpjUrvVW08azljLHZWtrkJ2UtZANdIrvlXd-r_kFeXfSnZb9AJ2DMXvozZSyofTbRBvMvz9j-GkO8dbUMkfTsizwehVI8dcCOJshoIO-tyPEBQ1TXEpRay4yKk6oSxExgb9fw6i5a8IczakJc9eEocLkJvLYy78tPgyt0Wfg1QpYdLb3OUQX8J6rqaSK6-bhVsiB3gZIBl2A0UEX8s7ZdDH838kfQZapBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835542934</pqid></control><display><type>article</type><title>WND-CHARM: Multi-purpose image classification using compound image transforms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Orlov, Nikita ; Shamir, Lior ; Macura, Tomasz ; Johnston, Josiah ; Eckley, D. Mark ; Goldberg, Ilya G.</creator><creatorcontrib>Orlov, Nikita ; Shamir, Lior ; Macura, Tomasz ; Johnston, Josiah ; Eckley, D. Mark ; Goldberg, Ilya G.</creatorcontrib><description>We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from
http://www.openmicroscopy.org.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2008.04.013</identifier><identifier>PMID: 18958301</identifier><identifier>CODEN: PRLEDG</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Biological imaging ; Exact sciences and technology ; High dimensional classification ; Image classification ; Image features ; Image processing ; Information, signal and communications theory ; Miscellaneous ; Pattern recognition ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Telecommunications and information theory</subject><ispartof>Pattern recognition letters, 2008-08, Vol.29 (11), p.1684-1693</ispartof><rights>2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-44819915703393d6de8e114159c7fa906f1701c357a2e5d552456ed83b8fcfb93</citedby><cites>FETCH-LOGICAL-c559t-44819915703393d6de8e114159c7fa906f1701c357a2e5d552456ed83b8fcfb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167865508001530$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20508396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18958301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orlov, Nikita</creatorcontrib><creatorcontrib>Shamir, Lior</creatorcontrib><creatorcontrib>Macura, Tomasz</creatorcontrib><creatorcontrib>Johnston, Josiah</creatorcontrib><creatorcontrib>Eckley, D. Mark</creatorcontrib><creatorcontrib>Goldberg, Ilya G.</creatorcontrib><title>WND-CHARM: Multi-purpose image classification using compound image transforms</title><title>Pattern recognition letters</title><addtitle>Pattern Recognit Lett</addtitle><description>We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from
http://www.openmicroscopy.org.</description><subject>Applied sciences</subject><subject>Biological imaging</subject><subject>Exact sciences and technology</subject><subject>High dimensional classification</subject><subject>Image classification</subject><subject>Image features</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Miscellaneous</subject><subject>Pattern recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EotvCP0AoFyQuCXZsJzYHpGopFKkLEgJxtLzOePEqiYMnqcS_x9VGLVw4-eBv3rx5j5AXjFaMsubNsZrsnMBVNaWqoqKijD8iG6baumy5EI_JJmNtqRopz8g54pFS2nCtnpIzprRUnLIN2f34_L7cXl9-3b0tdks_h3Ja0hQRijDYAxSut4jBB2fnEMdiwTAeCheHKS5jtzJzsiP6mAZ8Rp542yM8X98L8v3D1bftdXnz5eOn7eVN6aTUcymEYloz2VLONe-aDhQwJpjUrvVW08azljLHZWtrkJ2UtZANdIrvlXd-r_kFeXfSnZb9AJ2DMXvozZSyofTbRBvMvz9j-GkO8dbUMkfTsizwehVI8dcCOJshoIO-tyPEBQ1TXEpRay4yKk6oSxExgb9fw6i5a8IczakJc9eEocLkJvLYy78tPgyt0Wfg1QpYdLb3OUQX8J6rqaSK6-bhVsiB3gZIBl2A0UEX8s7ZdDH838kfQZapBw</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Orlov, Nikita</creator><creator>Shamir, Lior</creator><creator>Macura, Tomasz</creator><creator>Johnston, Josiah</creator><creator>Eckley, D. Mark</creator><creator>Goldberg, Ilya G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080801</creationdate><title>WND-CHARM: Multi-purpose image classification using compound image transforms</title><author>Orlov, Nikita ; Shamir, Lior ; Macura, Tomasz ; Johnston, Josiah ; Eckley, D. Mark ; Goldberg, Ilya G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-44819915703393d6de8e114159c7fa906f1701c357a2e5d552456ed83b8fcfb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Biological imaging</topic><topic>Exact sciences and technology</topic><topic>High dimensional classification</topic><topic>Image classification</topic><topic>Image features</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Miscellaneous</topic><topic>Pattern recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orlov, Nikita</creatorcontrib><creatorcontrib>Shamir, Lior</creatorcontrib><creatorcontrib>Macura, Tomasz</creatorcontrib><creatorcontrib>Johnston, Josiah</creatorcontrib><creatorcontrib>Eckley, D. Mark</creatorcontrib><creatorcontrib>Goldberg, Ilya G.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orlov, Nikita</au><au>Shamir, Lior</au><au>Macura, Tomasz</au><au>Johnston, Josiah</au><au>Eckley, D. Mark</au><au>Goldberg, Ilya G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WND-CHARM: Multi-purpose image classification using compound image transforms</atitle><jtitle>Pattern recognition letters</jtitle><addtitle>Pattern Recognit Lett</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>29</volume><issue>11</issue><spage>1684</spage><epage>1693</epage><pages>1684-1693</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><coden>PRLEDG</coden><abstract>We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from
http://www.openmicroscopy.org.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>18958301</pmid><doi>10.1016/j.patrec.2008.04.013</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2008-08, Vol.29 (11), p.1684-1693 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2573471 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Biological imaging Exact sciences and technology High dimensional classification Image classification Image features Image processing Information, signal and communications theory Miscellaneous Pattern recognition Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Telecommunications and information theory |
title | WND-CHARM: Multi-purpose image classification using compound image transforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WND-CHARM:%20Multi-purpose%20image%20classification%20using%20compound%20image%20transforms&rft.jtitle=Pattern%20recognition%20letters&rft.au=Orlov,%20Nikita&rft.date=2008-08-01&rft.volume=29&rft.issue=11&rft.spage=1684&rft.epage=1693&rft.pages=1684-1693&rft.issn=0167-8655&rft.eissn=1872-7344&rft.coden=PRLEDG&rft_id=info:doi/10.1016/j.patrec.2008.04.013&rft_dat=%3Cproquest_pubme%3E1835542934%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835542934&rft_id=info:pmid/18958301&rft_els_id=S0167865508001530&rfr_iscdi=true |