Accuracy of direct gradient sensing by single cells

Many types of cells are able to accurately sense shallow gradients of chemicals across their diameters, allowing the cells to move toward or away from chemical sources. This chemotactic ability relies on the remarkable capacity of cells to infer gradients from particles randomly arriving at cell-sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-10, Vol.105 (41), p.15749-15754
Hauptverfasser: Endres, Robert G, Wingreen, Ned S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15754
container_issue 41
container_start_page 15749
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Endres, Robert G
Wingreen, Ned S
description Many types of cells are able to accurately sense shallow gradients of chemicals across their diameters, allowing the cells to move toward or away from chemical sources. This chemotactic ability relies on the remarkable capacity of cells to infer gradients from particles randomly arriving at cell-surface receptors by diffusion. Whereas the physical limits of concentration sensing by cells have been explored, there is no theory for the physical limits of gradient sensing. Here, we derive such a theory, using as models a perfectly absorbing sphere and a perfectly monitoring sphere, which, respectively, infer gradients from the absorbed surface particle density or the positions of freely diffusing particles inside a spherical volume. We find that the perfectly absorbing sphere is superior to the perfectly monitoring sphere, both for concentration and gradient sensing, because previously observed particles are never remeasured. The superiority of the absorbing sphere helps explain the presence at the surfaces of cells of signal-degrading enzymes, such as PDE for cAMP in Dictyostelium discoideum (Dicty) and BAR1 for mating factor α in Saccharomyces cerevisiae (budding yeast). Quantitatively, our theory compares favorably with recent measurements of Dicty moving up a cAMP gradient, suggesting these cells operate near the physical limits of gradient detection.
doi_str_mv 10.1073/pnas.0804688105
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2572938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464487</jstor_id><sourcerecordid>25464487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-dace1a14d4c0733cb1a533e08c487206291887c717fc63ac952b58cfb67c85ac3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAmIOCBxSDvjb1-QqoovqRIH6NlyHGfJKhsvdoLY_x6HXXWBS09zmN88vTePkOcIFwiKXe5Gly9AA5daI4gHZIVgsJbcwEOyAqCq1pzyM_Ik5w0AGKHhMTlDrTlD0CvCrryfk_P7KnZV26fgp2qdXNuHcapyGHM_rqtmXy1zCJUPw5CfkkedG3J4dpzn5PbD-2_Xn-qbLx8_X1_d1F5SmOrW-YAOect9scp8g04wFkB7rhUFSU2xobxC1XnJnDeCNkL7rpHKa-E8OyfvDrq7udmG1hdLyQ12l_qtS3sbXW__3Yz9d7uOPy0Vihqmi8Cbo0CKP-aQJ7vt8xLBjSHO2UojixEw94IUKOMMZAFf_wdu4pzG8oXCIEOJWhXo8gD5FHNOobuzjGCX2uxSmz3VVi5e_p30xB97KsDbI7BcnuSE5WhRKG5sNw_DFH5Nha3uYQvy4oBs8hTTHUMFl5z_SfDqsO9ctG6d-mxvvy4BAYVAkJL9Btbkvc4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201316187</pqid></control><display><type>article</type><title>Accuracy of direct gradient sensing by single cells</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Endres, Robert G ; Wingreen, Ned S</creator><creatorcontrib>Endres, Robert G ; Wingreen, Ned S</creatorcontrib><description>Many types of cells are able to accurately sense shallow gradients of chemicals across their diameters, allowing the cells to move toward or away from chemical sources. This chemotactic ability relies on the remarkable capacity of cells to infer gradients from particles randomly arriving at cell-surface receptors by diffusion. Whereas the physical limits of concentration sensing by cells have been explored, there is no theory for the physical limits of gradient sensing. Here, we derive such a theory, using as models a perfectly absorbing sphere and a perfectly monitoring sphere, which, respectively, infer gradients from the absorbed surface particle density or the positions of freely diffusing particles inside a spherical volume. We find that the perfectly absorbing sphere is superior to the perfectly monitoring sphere, both for concentration and gradient sensing, because previously observed particles are never remeasured. The superiority of the absorbing sphere helps explain the presence at the surfaces of cells of signal-degrading enzymes, such as PDE for cAMP in Dictyostelium discoideum (Dicty) and BAR1 for mating factor α in Saccharomyces cerevisiae (budding yeast). Quantitatively, our theory compares favorably with recent measurements of Dicty moving up a cAMP gradient, suggesting these cells operate near the physical limits of gradient detection.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0804688105</identifier><identifier>PMID: 18843108</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biological Transport ; Biosensors ; Cell aggregates ; Cell motility ; Cells ; Cells - metabolism ; Chemotaxis ; Cyclic AMP ; Cyclic AMP - metabolism ; Dictyostelium discoideum ; Diffusion ; Enzymes ; Germ cells ; Ligands ; Lymphocytes ; Mating ; Microbiology ; Models, Biological ; Neutrophils ; Particle diffusion ; Pipettes ; Receptors ; Receptors, Cyclic AMP - metabolism ; Saccharomyces cerevisiae ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-10, Vol.105 (41), p.15749-15754</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 14, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-dace1a14d4c0733cb1a533e08c487206291887c717fc63ac952b58cfb67c85ac3</citedby><cites>FETCH-LOGICAL-c620t-dace1a14d4c0733cb1a533e08c487206291887c717fc63ac952b58cfb67c85ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464487$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464487$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18843108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Endres, Robert G</creatorcontrib><creatorcontrib>Wingreen, Ned S</creatorcontrib><title>Accuracy of direct gradient sensing by single cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Many types of cells are able to accurately sense shallow gradients of chemicals across their diameters, allowing the cells to move toward or away from chemical sources. This chemotactic ability relies on the remarkable capacity of cells to infer gradients from particles randomly arriving at cell-surface receptors by diffusion. Whereas the physical limits of concentration sensing by cells have been explored, there is no theory for the physical limits of gradient sensing. Here, we derive such a theory, using as models a perfectly absorbing sphere and a perfectly monitoring sphere, which, respectively, infer gradients from the absorbed surface particle density or the positions of freely diffusing particles inside a spherical volume. We find that the perfectly absorbing sphere is superior to the perfectly monitoring sphere, both for concentration and gradient sensing, because previously observed particles are never remeasured. The superiority of the absorbing sphere helps explain the presence at the surfaces of cells of signal-degrading enzymes, such as PDE for cAMP in Dictyostelium discoideum (Dicty) and BAR1 for mating factor α in Saccharomyces cerevisiae (budding yeast). Quantitatively, our theory compares favorably with recent measurements of Dicty moving up a cAMP gradient, suggesting these cells operate near the physical limits of gradient detection.</description><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Biosensors</subject><subject>Cell aggregates</subject><subject>Cell motility</subject><subject>Cells</subject><subject>Cells - metabolism</subject><subject>Chemotaxis</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Dictyostelium discoideum</subject><subject>Diffusion</subject><subject>Enzymes</subject><subject>Germ cells</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Mating</subject><subject>Microbiology</subject><subject>Models, Biological</subject><subject>Neutrophils</subject><subject>Particle diffusion</subject><subject>Pipettes</subject><subject>Receptors</subject><subject>Receptors, Cyclic AMP - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAmIOCBxSDvjb1-QqoovqRIH6NlyHGfJKhsvdoLY_x6HXXWBS09zmN88vTePkOcIFwiKXe5Gly9AA5daI4gHZIVgsJbcwEOyAqCq1pzyM_Ik5w0AGKHhMTlDrTlD0CvCrryfk_P7KnZV26fgp2qdXNuHcapyGHM_rqtmXy1zCJUPw5CfkkedG3J4dpzn5PbD-2_Xn-qbLx8_X1_d1F5SmOrW-YAOect9scp8g04wFkB7rhUFSU2xobxC1XnJnDeCNkL7rpHKa-E8OyfvDrq7udmG1hdLyQ12l_qtS3sbXW__3Yz9d7uOPy0Vihqmi8Cbo0CKP-aQJ7vt8xLBjSHO2UojixEw94IUKOMMZAFf_wdu4pzG8oXCIEOJWhXo8gD5FHNOobuzjGCX2uxSmz3VVi5e_p30xB97KsDbI7BcnuSE5WhRKG5sNw_DFH5Nha3uYQvy4oBs8hTTHUMFl5z_SfDqsO9ctG6d-mxvvy4BAYVAkJL9Btbkvc4</recordid><startdate>20081014</startdate><enddate>20081014</enddate><creator>Endres, Robert G</creator><creator>Wingreen, Ned S</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081014</creationdate><title>Accuracy of direct gradient sensing by single cells</title><author>Endres, Robert G ; Wingreen, Ned S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-dace1a14d4c0733cb1a533e08c487206291887c717fc63ac952b58cfb67c85ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Biosensors</topic><topic>Cell aggregates</topic><topic>Cell motility</topic><topic>Cells</topic><topic>Cells - metabolism</topic><topic>Chemotaxis</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Dictyostelium discoideum</topic><topic>Diffusion</topic><topic>Enzymes</topic><topic>Germ cells</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Mating</topic><topic>Microbiology</topic><topic>Models, Biological</topic><topic>Neutrophils</topic><topic>Particle diffusion</topic><topic>Pipettes</topic><topic>Receptors</topic><topic>Receptors, Cyclic AMP - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Endres, Robert G</creatorcontrib><creatorcontrib>Wingreen, Ned S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Endres, Robert G</au><au>Wingreen, Ned S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of direct gradient sensing by single cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-10-14</date><risdate>2008</risdate><volume>105</volume><issue>41</issue><spage>15749</spage><epage>15754</epage><pages>15749-15754</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Many types of cells are able to accurately sense shallow gradients of chemicals across their diameters, allowing the cells to move toward or away from chemical sources. This chemotactic ability relies on the remarkable capacity of cells to infer gradients from particles randomly arriving at cell-surface receptors by diffusion. Whereas the physical limits of concentration sensing by cells have been explored, there is no theory for the physical limits of gradient sensing. Here, we derive such a theory, using as models a perfectly absorbing sphere and a perfectly monitoring sphere, which, respectively, infer gradients from the absorbed surface particle density or the positions of freely diffusing particles inside a spherical volume. We find that the perfectly absorbing sphere is superior to the perfectly monitoring sphere, both for concentration and gradient sensing, because previously observed particles are never remeasured. The superiority of the absorbing sphere helps explain the presence at the surfaces of cells of signal-degrading enzymes, such as PDE for cAMP in Dictyostelium discoideum (Dicty) and BAR1 for mating factor α in Saccharomyces cerevisiae (budding yeast). Quantitatively, our theory compares favorably with recent measurements of Dicty moving up a cAMP gradient, suggesting these cells operate near the physical limits of gradient detection.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18843108</pmid><doi>10.1073/pnas.0804688105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-10, Vol.105 (41), p.15749-15754
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2572938
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Biological Transport
Biosensors
Cell aggregates
Cell motility
Cells
Cells - metabolism
Chemotaxis
Cyclic AMP
Cyclic AMP - metabolism
Dictyostelium discoideum
Diffusion
Enzymes
Germ cells
Ligands
Lymphocytes
Mating
Microbiology
Models, Biological
Neutrophils
Particle diffusion
Pipettes
Receptors
Receptors, Cyclic AMP - metabolism
Saccharomyces cerevisiae
Yeast
title Accuracy of direct gradient sensing by single cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20direct%20gradient%20sensing%20by%20single%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Endres,%20Robert%20G&rft.date=2008-10-14&rft.volume=105&rft.issue=41&rft.spage=15749&rft.epage=15754&rft.pages=15749-15754&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0804688105&rft_dat=%3Cjstor_pubme%3E25464487%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201316187&rft_id=info:pmid/18843108&rft_jstor_id=25464487&rfr_iscdi=true