Inactivation of an invertebrate acetylcholinesterase by sulfhydryl reagents: A reconsideration of the implications for insecticide design

Previously we used site-directed mutagenesis, in vitro expression, and molecular modeling to investigate the inactivation of an invertebrate acetylcholinesterase, cholinesterase 2 from amphioxus, by the sulfhydryl reagents 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). We cre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemico-biological interactions 2008-09, Vol.175 (1), p.73-75
Hauptverfasser: Rowland, M., Tsigelny, I., Wolfe, M., Pezzementi, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously we used site-directed mutagenesis, in vitro expression, and molecular modeling to investigate the inactivation of an invertebrate acetylcholinesterase, cholinesterase 2 from amphioxus, by the sulfhydryl reagents 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). We created the mutants C310A, C466A, C310A/C466A and C310A/F312I to assess the roles of the two cysteines and a proposal that the increased rate of inactivation previously found in an F312I mutant was due to increased access of sulfhydryl reagents to Cys310. Our results indicated that both of the cysteines could be involved in inactivation by sulfhydryl reagents, but that the cysteine near the acyl pocket was more accessible. We speculated that the inactivation of aphid AChEs by sulfhydryl reagents was due to the presence of a cysteine homologous to Cys310 and proposed that this residue could be a target for a specific insecticide. Here we reconsider this proposal.
ISSN:0009-2797
1872-7786
DOI:10.1016/j.cbi.2008.02.006