Influenza pandemic preparedness in France: modelling the impact of interventions
Background: Influenza pandemics result in excess mortality and social disruption. To assist health authorities update the French pandemic plan, the authors estimated the number of health events (cases, hospitalisations, and deaths) in a pandemic and compared interventions in terms of impact and effi...
Gespeichert in:
Veröffentlicht in: | Journal of epidemiology and community health (1979) 2006-05, Vol.60 (5), p.399-404 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 404 |
---|---|
container_issue | 5 |
container_start_page | 399 |
container_title | Journal of epidemiology and community health (1979) |
container_volume | 60 |
creator | Doyle, Aoife Bonmarin, Isabelle Lévy-Bruhl, Daniel Strat, Yann Le Desenclos, Jean-Claude |
description | Background: Influenza pandemics result in excess mortality and social disruption. To assist health authorities update the French pandemic plan, the authors estimated the number of health events (cases, hospitalisations, and deaths) in a pandemic and compared interventions in terms of impact and efficiency. Method: A Monte Carlo simulation model, incorporating probability distributions of key variables, provided estimates of health events (HE) by age and risk group. Input variables were set after literature and expert consultation. The impact of targeted influenza vaccination and antiviral prophylaxis/treatment (oseltamivir) in high risk groups (elderly, chronic diseases), priority (essential professionals), and total populations was compared. Outcome measures were HE avoided, number of doses needed, and direct cost per HE avoided. Results: Without intervention, an influenza pandemic could result in 14.9 million cases, 0.12 million deaths, and 0.6 million hospitalisations in France. Twenty four per cent of deaths and 40% of hospitalisations would be among high risk groups. With a 25% attack rate, 2000–86 000 deaths could be avoided, depending on population targeted and intervention. If available initially, vaccination of the total population is preferred. If not, for priority populations, seasonal prophylaxis seems the best strategy. For high risk groups, antiviral treatment, although less effective, seems more feasible and cost effective than prophylaxis (respectively 29% deaths avoided; 1800 doses/death avoided and 56% deaths avoided; 18 500 doses/death avoided) and should be chosen, especially if limited drug availability. Conclusion: The results suggest a strong role for antivirals in an influenza pandemic. While this model can compare the impact of different intervention strategies, there remains uncertainty surrounding key variables. |
doi_str_mv | 10.1136/jech.2005.034082 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2563983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40793969</jstor_id><sourcerecordid>40793969</sourcerecordid><originalsourceid>FETCH-LOGICAL-b579t-e3ec6cd5a9118a5b7fae359853c093e86042a9a19f04f02227ffd561f2ab3dae3</originalsourceid><addsrcrecordid>eNqFkc1v1DAUxCMEotvCnQsoEioXlMUfsR33gIRWlFaqoAcoFRfLcZ67DokT7GwF_PV4ldUWuPRkS_N7Y8-bLHuG0RJjyt-0YNZLghBbIlqiijzIFrgUqCCCVg-zBcIlLZJ6fZAdxtiidBVEPs4OMOdJInKRXZ57223A_9b5qH0DvTP5GGDUARoPMebO56dBewMneT800HXO3-TTGnLXj9pM-WATMkG4BT-5wccn2SOruwhPd-dR9uX0_efVWXHx6cP56t1FUTMhpwIoGG4apiXGlWa1sBookxWjBkkKFUcl0VJjaVFpESFEWNswji3RNW0Se5S9nX3HTd1DY9LzQXdqDK7X4ZcatFP_Kt6t1c1wqwjjVFY0GbzaGYThxwbipHoXTQqoPQybqLioOClLdi9IUEWFoDiBL_8D22ETfNqCwkJIwkpSokShmTJhiDGA3f8ZI7VtVW1bVdtW1dxqGnnxd9a7gV2NCTjeAToa3dltYS7ecYJLTDhP3POZa-M0hL1eIiGp5FufYtZdnODnXtfhe1oHFUx9vFopfvn1-uxq9U2JxL-e-bpv74_xB1rV0k4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779254240</pqid></control><display><type>article</type><title>Influenza pandemic preparedness in France: modelling the impact of interventions</title><source>MEDLINE</source><source>BMJ Journals - NESLi2</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><creator>Doyle, Aoife ; Bonmarin, Isabelle ; Lévy-Bruhl, Daniel ; Strat, Yann Le ; Desenclos, Jean-Claude</creator><creatorcontrib>Doyle, Aoife ; Bonmarin, Isabelle ; Lévy-Bruhl, Daniel ; Strat, Yann Le ; Desenclos, Jean-Claude</creatorcontrib><description>Background: Influenza pandemics result in excess mortality and social disruption. To assist health authorities update the French pandemic plan, the authors estimated the number of health events (cases, hospitalisations, and deaths) in a pandemic and compared interventions in terms of impact and efficiency. Method: A Monte Carlo simulation model, incorporating probability distributions of key variables, provided estimates of health events (HE) by age and risk group. Input variables were set after literature and expert consultation. The impact of targeted influenza vaccination and antiviral prophylaxis/treatment (oseltamivir) in high risk groups (elderly, chronic diseases), priority (essential professionals), and total populations was compared. Outcome measures were HE avoided, number of doses needed, and direct cost per HE avoided. Results: Without intervention, an influenza pandemic could result in 14.9 million cases, 0.12 million deaths, and 0.6 million hospitalisations in France. Twenty four per cent of deaths and 40% of hospitalisations would be among high risk groups. With a 25% attack rate, 2000–86 000 deaths could be avoided, depending on population targeted and intervention. If available initially, vaccination of the total population is preferred. If not, for priority populations, seasonal prophylaxis seems the best strategy. For high risk groups, antiviral treatment, although less effective, seems more feasible and cost effective than prophylaxis (respectively 29% deaths avoided; 1800 doses/death avoided and 56% deaths avoided; 18 500 doses/death avoided) and should be chosen, especially if limited drug availability. Conclusion: The results suggest a strong role for antivirals in an influenza pandemic. While this model can compare the impact of different intervention strategies, there remains uncertainty surrounding key variables.</description><identifier>ISSN: 0143-005X</identifier><identifier>EISSN: 1470-2738</identifier><identifier>DOI: 10.1136/jech.2005.034082</identifier><identifier>PMID: 16614329</identifier><identifier>CODEN: JECHDR</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd</publisher><subject>Adolescent ; Adult ; Age groups ; Aged ; Aged, 80 and over ; antiviral agents ; Antiviral Agents - therapeutic use ; Antivirals ; At risk population ; Biological and medical sciences ; Child ; Child, Preschool ; Chronic Disease ; Computer Simulation ; disaster planning ; Disease models ; Disease Outbreaks - prevention & control ; Disease prevention ; Dosage ; Drug dosages ; Emergency preparedness ; Evidence Based Public Health Policy and Practice ; Female ; France - epidemiology ; General aspects ; Hospitalization ; Hospitalization - statistics & numerical data ; Human viral diseases ; Humans ; Immunization ; Infant ; Infant, Newborn ; Infectious diseases ; Influenza ; Influenza vaccines ; Influenza Vaccines - therapeutic use ; Influenza, Human - epidemiology ; Influenza, Human - mortality ; Influenza, Human - prevention & control ; Intervention ; Literature reviews ; Male ; Medical sciences ; Medical treatment ; Middle Aged ; Miscellaneous ; Models, Theoretical ; Monte Carlo simulation ; Oseltamivir - therapeutic use ; pandemic ; Pandemics ; Prophylaxis ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Vaccination ; Vaccines ; Viral diseases ; Viral diseases of the respiratory system and ent viral diseases</subject><ispartof>Journal of epidemiology and community health (1979), 2006-05, Vol.60 (5), p.399-404</ispartof><rights>Copyright 2006 Journal of Epidemiology and Community Health</rights><rights>2006 BMJ Publishing Group</rights><rights>2006 INIST-CNRS</rights><rights>Copyright: 2006 Copyright 2006 Journal of Epidemiology and Community Health</rights><rights>Copyright ©2006 BMJ Publishing Group Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b579t-e3ec6cd5a9118a5b7fae359853c093e86042a9a19f04f02227ffd561f2ab3dae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://jech.bmj.com/content/60/5/399.full.pdf$$EPDF$$P50$$Gbmj$$H</linktopdf><linktohtml>$$Uhttps://jech.bmj.com/content/60/5/399.full$$EHTML$$P50$$Gbmj$$H</linktohtml><link.rule.ids>114,115,230,314,724,777,781,800,882,3183,23552,27905,27906,53772,53774,57998,58231,77349,77380</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17691266$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16614329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Doyle, Aoife</creatorcontrib><creatorcontrib>Bonmarin, Isabelle</creatorcontrib><creatorcontrib>Lévy-Bruhl, Daniel</creatorcontrib><creatorcontrib>Strat, Yann Le</creatorcontrib><creatorcontrib>Desenclos, Jean-Claude</creatorcontrib><title>Influenza pandemic preparedness in France: modelling the impact of interventions</title><title>Journal of epidemiology and community health (1979)</title><addtitle>J Epidemiol Community Health</addtitle><description>Background: Influenza pandemics result in excess mortality and social disruption. To assist health authorities update the French pandemic plan, the authors estimated the number of health events (cases, hospitalisations, and deaths) in a pandemic and compared interventions in terms of impact and efficiency. Method: A Monte Carlo simulation model, incorporating probability distributions of key variables, provided estimates of health events (HE) by age and risk group. Input variables were set after literature and expert consultation. The impact of targeted influenza vaccination and antiviral prophylaxis/treatment (oseltamivir) in high risk groups (elderly, chronic diseases), priority (essential professionals), and total populations was compared. Outcome measures were HE avoided, number of doses needed, and direct cost per HE avoided. Results: Without intervention, an influenza pandemic could result in 14.9 million cases, 0.12 million deaths, and 0.6 million hospitalisations in France. Twenty four per cent of deaths and 40% of hospitalisations would be among high risk groups. With a 25% attack rate, 2000–86 000 deaths could be avoided, depending on population targeted and intervention. If available initially, vaccination of the total population is preferred. If not, for priority populations, seasonal prophylaxis seems the best strategy. For high risk groups, antiviral treatment, although less effective, seems more feasible and cost effective than prophylaxis (respectively 29% deaths avoided; 1800 doses/death avoided and 56% deaths avoided; 18 500 doses/death avoided) and should be chosen, especially if limited drug availability. Conclusion: The results suggest a strong role for antivirals in an influenza pandemic. While this model can compare the impact of different intervention strategies, there remains uncertainty surrounding key variables.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age groups</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>antiviral agents</subject><subject>Antiviral Agents - therapeutic use</subject><subject>Antivirals</subject><subject>At risk population</subject><subject>Biological and medical sciences</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Chronic Disease</subject><subject>Computer Simulation</subject><subject>disaster planning</subject><subject>Disease models</subject><subject>Disease Outbreaks - prevention & control</subject><subject>Disease prevention</subject><subject>Dosage</subject><subject>Drug dosages</subject><subject>Emergency preparedness</subject><subject>Evidence Based Public Health Policy and Practice</subject><subject>Female</subject><subject>France - epidemiology</subject><subject>General aspects</subject><subject>Hospitalization</subject><subject>Hospitalization - statistics & numerical data</subject><subject>Human viral diseases</subject><subject>Humans</subject><subject>Immunization</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Influenza vaccines</subject><subject>Influenza Vaccines - therapeutic use</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - mortality</subject><subject>Influenza, Human - prevention & control</subject><subject>Intervention</subject><subject>Literature reviews</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Medical treatment</subject><subject>Middle Aged</subject><subject>Miscellaneous</subject><subject>Models, Theoretical</subject><subject>Monte Carlo simulation</subject><subject>Oseltamivir - therapeutic use</subject><subject>pandemic</subject><subject>Pandemics</subject><subject>Prophylaxis</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Vaccination</subject><subject>Vaccines</subject><subject>Viral diseases</subject><subject>Viral diseases of the respiratory system and ent viral diseases</subject><issn>0143-005X</issn><issn>1470-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1v1DAUxCMEotvCnQsoEioXlMUfsR33gIRWlFaqoAcoFRfLcZ67DokT7GwF_PV4ldUWuPRkS_N7Y8-bLHuG0RJjyt-0YNZLghBbIlqiijzIFrgUqCCCVg-zBcIlLZJ6fZAdxtiidBVEPs4OMOdJInKRXZ57223A_9b5qH0DvTP5GGDUARoPMebO56dBewMneT800HXO3-TTGnLXj9pM-WATMkG4BT-5wccn2SOruwhPd-dR9uX0_efVWXHx6cP56t1FUTMhpwIoGG4apiXGlWa1sBookxWjBkkKFUcl0VJjaVFpESFEWNswji3RNW0Se5S9nX3HTd1DY9LzQXdqDK7X4ZcatFP_Kt6t1c1wqwjjVFY0GbzaGYThxwbipHoXTQqoPQybqLioOClLdi9IUEWFoDiBL_8D22ETfNqCwkJIwkpSokShmTJhiDGA3f8ZI7VtVW1bVdtW1dxqGnnxd9a7gV2NCTjeAToa3dltYS7ecYJLTDhP3POZa-M0hL1eIiGp5FufYtZdnODnXtfhe1oHFUx9vFopfvn1-uxq9U2JxL-e-bpv74_xB1rV0k4</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Doyle, Aoife</creator><creator>Bonmarin, Isabelle</creator><creator>Lévy-Bruhl, Daniel</creator><creator>Strat, Yann Le</creator><creator>Desenclos, Jean-Claude</creator><general>BMJ Publishing Group Ltd</general><general>BMJ Publishing Group</general><general>BMJ</general><general>BMJ Publishing Group LTD</general><general>BMJ Group</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060501</creationdate><title>Influenza pandemic preparedness in France: modelling the impact of interventions</title><author>Doyle, Aoife ; Bonmarin, Isabelle ; Lévy-Bruhl, Daniel ; Strat, Yann Le ; Desenclos, Jean-Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b579t-e3ec6cd5a9118a5b7fae359853c093e86042a9a19f04f02227ffd561f2ab3dae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age groups</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>antiviral agents</topic><topic>Antiviral Agents - therapeutic use</topic><topic>Antivirals</topic><topic>At risk population</topic><topic>Biological and medical sciences</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Chronic Disease</topic><topic>Computer Simulation</topic><topic>disaster planning</topic><topic>Disease models</topic><topic>Disease Outbreaks - prevention & control</topic><topic>Disease prevention</topic><topic>Dosage</topic><topic>Drug dosages</topic><topic>Emergency preparedness</topic><topic>Evidence Based Public Health Policy and Practice</topic><topic>Female</topic><topic>France - epidemiology</topic><topic>General aspects</topic><topic>Hospitalization</topic><topic>Hospitalization - statistics & numerical data</topic><topic>Human viral diseases</topic><topic>Humans</topic><topic>Immunization</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Influenza vaccines</topic><topic>Influenza Vaccines - therapeutic use</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - mortality</topic><topic>Influenza, Human - prevention & control</topic><topic>Intervention</topic><topic>Literature reviews</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Medical treatment</topic><topic>Middle Aged</topic><topic>Miscellaneous</topic><topic>Models, Theoretical</topic><topic>Monte Carlo simulation</topic><topic>Oseltamivir - therapeutic use</topic><topic>pandemic</topic><topic>Pandemics</topic><topic>Prophylaxis</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Vaccination</topic><topic>Vaccines</topic><topic>Viral diseases</topic><topic>Viral diseases of the respiratory system and ent viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doyle, Aoife</creatorcontrib><creatorcontrib>Bonmarin, Isabelle</creatorcontrib><creatorcontrib>Lévy-Bruhl, Daniel</creatorcontrib><creatorcontrib>Strat, Yann Le</creatorcontrib><creatorcontrib>Desenclos, Jean-Claude</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of epidemiology and community health (1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doyle, Aoife</au><au>Bonmarin, Isabelle</au><au>Lévy-Bruhl, Daniel</au><au>Strat, Yann Le</au><au>Desenclos, Jean-Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influenza pandemic preparedness in France: modelling the impact of interventions</atitle><jtitle>Journal of epidemiology and community health (1979)</jtitle><addtitle>J Epidemiol Community Health</addtitle><date>2006-05-01</date><risdate>2006</risdate><volume>60</volume><issue>5</issue><spage>399</spage><epage>404</epage><pages>399-404</pages><issn>0143-005X</issn><eissn>1470-2738</eissn><coden>JECHDR</coden><abstract>Background: Influenza pandemics result in excess mortality and social disruption. To assist health authorities update the French pandemic plan, the authors estimated the number of health events (cases, hospitalisations, and deaths) in a pandemic and compared interventions in terms of impact and efficiency. Method: A Monte Carlo simulation model, incorporating probability distributions of key variables, provided estimates of health events (HE) by age and risk group. Input variables were set after literature and expert consultation. The impact of targeted influenza vaccination and antiviral prophylaxis/treatment (oseltamivir) in high risk groups (elderly, chronic diseases), priority (essential professionals), and total populations was compared. Outcome measures were HE avoided, number of doses needed, and direct cost per HE avoided. Results: Without intervention, an influenza pandemic could result in 14.9 million cases, 0.12 million deaths, and 0.6 million hospitalisations in France. Twenty four per cent of deaths and 40% of hospitalisations would be among high risk groups. With a 25% attack rate, 2000–86 000 deaths could be avoided, depending on population targeted and intervention. If available initially, vaccination of the total population is preferred. If not, for priority populations, seasonal prophylaxis seems the best strategy. For high risk groups, antiviral treatment, although less effective, seems more feasible and cost effective than prophylaxis (respectively 29% deaths avoided; 1800 doses/death avoided and 56% deaths avoided; 18 500 doses/death avoided) and should be chosen, especially if limited drug availability. Conclusion: The results suggest a strong role for antivirals in an influenza pandemic. While this model can compare the impact of different intervention strategies, there remains uncertainty surrounding key variables.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd</pub><pmid>16614329</pmid><doi>10.1136/jech.2005.034082</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-005X |
ispartof | Journal of epidemiology and community health (1979), 2006-05, Vol.60 (5), p.399-404 |
issn | 0143-005X 1470-2738 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2563983 |
source | MEDLINE; BMJ Journals - NESLi2; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; PubMed Central |
subjects | Adolescent Adult Age groups Aged Aged, 80 and over antiviral agents Antiviral Agents - therapeutic use Antivirals At risk population Biological and medical sciences Child Child, Preschool Chronic Disease Computer Simulation disaster planning Disease models Disease Outbreaks - prevention & control Disease prevention Dosage Drug dosages Emergency preparedness Evidence Based Public Health Policy and Practice Female France - epidemiology General aspects Hospitalization Hospitalization - statistics & numerical data Human viral diseases Humans Immunization Infant Infant, Newborn Infectious diseases Influenza Influenza vaccines Influenza Vaccines - therapeutic use Influenza, Human - epidemiology Influenza, Human - mortality Influenza, Human - prevention & control Intervention Literature reviews Male Medical sciences Medical treatment Middle Aged Miscellaneous Models, Theoretical Monte Carlo simulation Oseltamivir - therapeutic use pandemic Pandemics Prophylaxis Public health. Hygiene Public health. Hygiene-occupational medicine Vaccination Vaccines Viral diseases Viral diseases of the respiratory system and ent viral diseases |
title | Influenza pandemic preparedness in France: modelling the impact of interventions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influenza%20pandemic%20preparedness%20in%20France:%20modelling%20the%20impact%20of%20interventions&rft.jtitle=Journal%20of%20epidemiology%20and%20community%20health%20(1979)&rft.au=Doyle,%20Aoife&rft.date=2006-05-01&rft.volume=60&rft.issue=5&rft.spage=399&rft.epage=404&rft.pages=399-404&rft.issn=0143-005X&rft.eissn=1470-2738&rft.coden=JECHDR&rft_id=info:doi/10.1136/jech.2005.034082&rft_dat=%3Cjstor_pubme%3E40793969%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779254240&rft_id=info:pmid/16614329&rft_jstor_id=40793969&rfr_iscdi=true |