Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2

Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2008-10, Vol.59 (13), p.3609-3619
Hauptverfasser: Lawson, Tracy, Lefebvre, Stephane, Baker, Neil R., Morison, James I. L., Raines, Christine A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3619
container_issue 13
container_start_page 3609
container_title Journal of experimental botany
container_volume 59
creator Lawson, Tracy
Lefebvre, Stephane
Baker, Neil R.
Morison, James I. L.
Raines, Christine A.
description Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F q ′/F m ′) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO 2 assimilation rates and higher internal CO 2 concentrations. Increasing CO 2 concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C i levels. Together, these data suggest that the primary light-induced opening or CO 2 -dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO 2 .
doi_str_mv 10.1093/jxb/ern211
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2561148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24037670</jstor_id><oup_id>10.1093/jxb/ern211</oup_id><sourcerecordid>24037670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-dc71411f876eaed87c2c158fc5c24ebf7737866492ba6f1d695aff55eeee69283</originalsourceid><addsrcrecordid>eNqFkUuLFDEYRYMoTju6ca9kowuhZvKovDaCNOoIAwOi65BOJV3VVCVlkhL735u2m3lsnGxCksPJ5bsAvMboAiNFL3d_NpcuBYLxE7DCLUcNaSl-ClYIEdIgxcQZeJHzDiHEEGPPwRmWknIsxQqk765bbBliyHAIcHI5zv1-HKEJHdwuJnXQunqc-1hi3ofSuzxUdJqNLTAGWC-gjaGkOMLoYS5xMsWMMLk8V6nLsEQ4Dtu-_FOub8hL8MybMbtXp_0c_Pzy-cf6qrm--fpt_em6sYyx0nRW4BZjLwV3xnVSWGIxk94yS1q38UJQITlvFdkY7nHHFTPeM-bq4opIeg4-Hr3zsplcZ10NaUY9p2Eyaa-jGfTDlzD0eht_a8I4xu1B8P4kSPHX4nLR05AP0zDBxSVrrjhVLWOPgli1itbpV_DDEbQp5pycv02DkT50qWuX-thlhd_ez3-HnsqrwLsTYLI1o08m2CHfcgQJKRS_x8Vl_v-Hb47crraY7jwtooILRP8CRGvBdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19493000</pqid></control><display><type>article</type><title>Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Lawson, Tracy ; Lefebvre, Stephane ; Baker, Neil R. ; Morison, James I. L. ; Raines, Christine A.</creator><creatorcontrib>Lawson, Tracy ; Lefebvre, Stephane ; Baker, Neil R. ; Morison, James I. L. ; Raines, Christine A.</creatorcontrib><description>Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F q ′/F m ′) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO 2 assimilation rates and higher internal CO 2 concentrations. Increasing CO 2 concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C i levels. Together, these data suggest that the primary light-induced opening or CO 2 -dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO 2 .</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/ern211</identifier><identifier>PMID: 18836187</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Carbon Dioxide - metabolism ; Chlorophyll - metabolism ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Guard cells ; Leaves ; Light ; Mesophyll ; Mesophyll cells ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - physiology ; Nicotiana - radiation effects ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - metabolism ; Photosynthesis ; Photosynthesis - radiation effects ; Plant Leaves - enzymology ; Plant Leaves - genetics ; Plant Leaves - physiology ; Plant Leaves - radiation effects ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stomata - enzymology ; Plant Stomata - genetics ; Plant Stomata - physiology ; Plant Stomata - radiation effects ; Plants ; Research Papers ; Stomata ; Stomatal conductance ; Transgenic plants</subject><ispartof>Journal of experimental botany, 2008-10, Vol.59 (13), p.3609-3619</ispartof><rights>Society for Experimental Biology 2008</rights><rights>2008 The Author(s). 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-dc71411f876eaed87c2c158fc5c24ebf7737866492ba6f1d695aff55eeee69283</citedby><cites>FETCH-LOGICAL-c555t-dc71411f876eaed87c2c158fc5c24ebf7737866492ba6f1d695aff55eeee69283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24037670$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24037670$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,1579,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20787967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18836187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawson, Tracy</creatorcontrib><creatorcontrib>Lefebvre, Stephane</creatorcontrib><creatorcontrib>Baker, Neil R.</creatorcontrib><creatorcontrib>Morison, James I. L.</creatorcontrib><creatorcontrib>Raines, Christine A.</creatorcontrib><title>Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F q ′/F m ′) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO 2 assimilation rates and higher internal CO 2 concentrations. Increasing CO 2 concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C i levels. Together, these data suggest that the primary light-induced opening or CO 2 -dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO 2 .</description><subject>Biological and medical sciences</subject><subject>Carbon Dioxide - metabolism</subject><subject>Chlorophyll - metabolism</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Guard cells</subject><subject>Leaves</subject><subject>Light</subject><subject>Mesophyll</subject><subject>Mesophyll cells</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - physiology</subject><subject>Nicotiana - radiation effects</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis - radiation effects</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - physiology</subject><subject>Plant Leaves - radiation effects</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stomata - enzymology</subject><subject>Plant Stomata - genetics</subject><subject>Plant Stomata - physiology</subject><subject>Plant Stomata - radiation effects</subject><subject>Plants</subject><subject>Research Papers</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Transgenic plants</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEYRYMoTju6ca9kowuhZvKovDaCNOoIAwOi65BOJV3VVCVlkhL735u2m3lsnGxCksPJ5bsAvMboAiNFL3d_NpcuBYLxE7DCLUcNaSl-ClYIEdIgxcQZeJHzDiHEEGPPwRmWknIsxQqk765bbBliyHAIcHI5zv1-HKEJHdwuJnXQunqc-1hi3ofSuzxUdJqNLTAGWC-gjaGkOMLoYS5xMsWMMLk8V6nLsEQ4Dtu-_FOub8hL8MybMbtXp_0c_Pzy-cf6qrm--fpt_em6sYyx0nRW4BZjLwV3xnVSWGIxk94yS1q38UJQITlvFdkY7nHHFTPeM-bq4opIeg4-Hr3zsplcZ10NaUY9p2Eyaa-jGfTDlzD0eht_a8I4xu1B8P4kSPHX4nLR05AP0zDBxSVrrjhVLWOPgli1itbpV_DDEbQp5pycv02DkT50qWuX-thlhd_ez3-HnsqrwLsTYLI1o08m2CHfcgQJKRS_x8Vl_v-Hb47crraY7jwtooILRP8CRGvBdQ</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Lawson, Tracy</creator><creator>Lefebvre, Stephane</creator><creator>Baker, Neil R.</creator><creator>Morison, James I. L.</creator><creator>Raines, Christine A.</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081001</creationdate><title>Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2</title><author>Lawson, Tracy ; Lefebvre, Stephane ; Baker, Neil R. ; Morison, James I. L. ; Raines, Christine A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-dc71411f876eaed87c2c158fc5c24ebf7737866492ba6f1d695aff55eeee69283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological and medical sciences</topic><topic>Carbon Dioxide - metabolism</topic><topic>Chlorophyll - metabolism</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Guard cells</topic><topic>Leaves</topic><topic>Light</topic><topic>Mesophyll</topic><topic>Mesophyll cells</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - physiology</topic><topic>Nicotiana - radiation effects</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis - radiation effects</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - physiology</topic><topic>Plant Leaves - radiation effects</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stomata - enzymology</topic><topic>Plant Stomata - genetics</topic><topic>Plant Stomata - physiology</topic><topic>Plant Stomata - radiation effects</topic><topic>Plants</topic><topic>Research Papers</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawson, Tracy</creatorcontrib><creatorcontrib>Lefebvre, Stephane</creatorcontrib><creatorcontrib>Baker, Neil R.</creatorcontrib><creatorcontrib>Morison, James I. L.</creatorcontrib><creatorcontrib>Raines, Christine A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawson, Tracy</au><au>Lefebvre, Stephane</au><au>Baker, Neil R.</au><au>Morison, James I. L.</au><au>Raines, Christine A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>59</volume><issue>13</issue><spage>3609</spage><epage>3619</epage><pages>3609-3619</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F q ′/F m ′) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO 2 assimilation rates and higher internal CO 2 concentrations. Increasing CO 2 concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C i levels. Together, these data suggest that the primary light-induced opening or CO 2 -dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO 2 .</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>18836187</pmid><doi>10.1093/jxb/ern211</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2008-10, Vol.59 (13), p.3609-3619
issn 0022-0957
1460-2431
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2561148
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Biological and medical sciences
Carbon Dioxide - metabolism
Chlorophyll - metabolism
Fluorescence
Fundamental and applied biological sciences. Psychology
Guard cells
Leaves
Light
Mesophyll
Mesophyll cells
Nicotiana - enzymology
Nicotiana - genetics
Nicotiana - physiology
Nicotiana - radiation effects
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - metabolism
Photosynthesis
Photosynthesis - radiation effects
Plant Leaves - enzymology
Plant Leaves - genetics
Plant Leaves - physiology
Plant Leaves - radiation effects
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Stomata - enzymology
Plant Stomata - genetics
Plant Stomata - physiology
Plant Stomata - radiation effects
Plants
Research Papers
Stomata
Stomatal conductance
Transgenic plants
title Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reductions%20in%20mesophyll%20and%20guard%20cell%20photosynthesis%20impact%20on%20the%20control%20of%20stomatal%20responses%20to%20light%20and%20CO2&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Lawson,%20Tracy&rft.date=2008-10-01&rft.volume=59&rft.issue=13&rft.spage=3609&rft.epage=3619&rft.pages=3609-3619&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jxb/ern211&rft_dat=%3Cjstor_pubme%3E24037670%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19493000&rft_id=info:pmid/18836187&rft_jstor_id=24037670&rft_oup_id=10.1093/jxb/ern211&rfr_iscdi=true