Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2
Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2008-10, Vol.59 (13), p.3609-3619 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3619 |
---|---|
container_issue | 13 |
container_start_page | 3609 |
container_title | Journal of experimental botany |
container_volume | 59 |
creator | Lawson, Tracy Lefebvre, Stephane Baker, Neil R. Morison, James I. L. Raines, Christine A. |
description | Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F q ′/F m ′) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO 2 assimilation rates and higher internal CO 2 concentrations. Increasing CO 2 concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C i levels. Together, these data suggest that the primary light-induced opening or CO 2 -dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO 2 . |
doi_str_mv | 10.1093/jxb/ern211 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2561148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24037670</jstor_id><oup_id>10.1093/jxb/ern211</oup_id><sourcerecordid>24037670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-dc71411f876eaed87c2c158fc5c24ebf7737866492ba6f1d695aff55eeee69283</originalsourceid><addsrcrecordid>eNqFkUuLFDEYRYMoTju6ca9kowuhZvKovDaCNOoIAwOi65BOJV3VVCVlkhL735u2m3lsnGxCksPJ5bsAvMboAiNFL3d_NpcuBYLxE7DCLUcNaSl-ClYIEdIgxcQZeJHzDiHEEGPPwRmWknIsxQqk765bbBliyHAIcHI5zv1-HKEJHdwuJnXQunqc-1hi3ofSuzxUdJqNLTAGWC-gjaGkOMLoYS5xMsWMMLk8V6nLsEQ4Dtu-_FOub8hL8MybMbtXp_0c_Pzy-cf6qrm--fpt_em6sYyx0nRW4BZjLwV3xnVSWGIxk94yS1q38UJQITlvFdkY7nHHFTPeM-bq4opIeg4-Hr3zsplcZ10NaUY9p2Eyaa-jGfTDlzD0eht_a8I4xu1B8P4kSPHX4nLR05AP0zDBxSVrrjhVLWOPgli1itbpV_DDEbQp5pycv02DkT50qWuX-thlhd_ez3-HnsqrwLsTYLI1o08m2CHfcgQJKRS_x8Vl_v-Hb47crraY7jwtooILRP8CRGvBdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19493000</pqid></control><display><type>article</type><title>Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Lawson, Tracy ; Lefebvre, Stephane ; Baker, Neil R. ; Morison, James I. L. ; Raines, Christine A.</creator><creatorcontrib>Lawson, Tracy ; Lefebvre, Stephane ; Baker, Neil R. ; Morison, James I. L. ; Raines, Christine A.</creatorcontrib><description>Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F q ′/F m ′) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO 2 assimilation rates and higher internal CO 2 concentrations. Increasing CO 2 concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C i levels. Together, these data suggest that the primary light-induced opening or CO 2 -dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO 2 .</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/ern211</identifier><identifier>PMID: 18836187</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Carbon Dioxide - metabolism ; Chlorophyll - metabolism ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Guard cells ; Leaves ; Light ; Mesophyll ; Mesophyll cells ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - physiology ; Nicotiana - radiation effects ; Phosphoric Monoester Hydrolases - genetics ; Phosphoric Monoester Hydrolases - metabolism ; Photosynthesis ; Photosynthesis - radiation effects ; Plant Leaves - enzymology ; Plant Leaves - genetics ; Plant Leaves - physiology ; Plant Leaves - radiation effects ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stomata - enzymology ; Plant Stomata - genetics ; Plant Stomata - physiology ; Plant Stomata - radiation effects ; Plants ; Research Papers ; Stomata ; Stomatal conductance ; Transgenic plants</subject><ispartof>Journal of experimental botany, 2008-10, Vol.59 (13), p.3609-3619</ispartof><rights>Society for Experimental Biology 2008</rights><rights>2008 The Author(s). 2008</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-dc71411f876eaed87c2c158fc5c24ebf7737866492ba6f1d695aff55eeee69283</citedby><cites>FETCH-LOGICAL-c555t-dc71411f876eaed87c2c158fc5c24ebf7737866492ba6f1d695aff55eeee69283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24037670$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24037670$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,1579,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20787967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18836187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawson, Tracy</creatorcontrib><creatorcontrib>Lefebvre, Stephane</creatorcontrib><creatorcontrib>Baker, Neil R.</creatorcontrib><creatorcontrib>Morison, James I. L.</creatorcontrib><creatorcontrib>Raines, Christine A.</creatorcontrib><title>Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F q ′/F m ′) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO 2 assimilation rates and higher internal CO 2 concentrations. Increasing CO 2 concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C i levels. Together, these data suggest that the primary light-induced opening or CO 2 -dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO 2 .</description><subject>Biological and medical sciences</subject><subject>Carbon Dioxide - metabolism</subject><subject>Chlorophyll - metabolism</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Guard cells</subject><subject>Leaves</subject><subject>Light</subject><subject>Mesophyll</subject><subject>Mesophyll cells</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - physiology</subject><subject>Nicotiana - radiation effects</subject><subject>Phosphoric Monoester Hydrolases - genetics</subject><subject>Phosphoric Monoester Hydrolases - metabolism</subject><subject>Photosynthesis</subject><subject>Photosynthesis - radiation effects</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - physiology</subject><subject>Plant Leaves - radiation effects</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stomata - enzymology</subject><subject>Plant Stomata - genetics</subject><subject>Plant Stomata - physiology</subject><subject>Plant Stomata - radiation effects</subject><subject>Plants</subject><subject>Research Papers</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Transgenic plants</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEYRYMoTju6ca9kowuhZvKovDaCNOoIAwOi65BOJV3VVCVlkhL735u2m3lsnGxCksPJ5bsAvMboAiNFL3d_NpcuBYLxE7DCLUcNaSl-ClYIEdIgxcQZeJHzDiHEEGPPwRmWknIsxQqk765bbBliyHAIcHI5zv1-HKEJHdwuJnXQunqc-1hi3ofSuzxUdJqNLTAGWC-gjaGkOMLoYS5xMsWMMLk8V6nLsEQ4Dtu-_FOub8hL8MybMbtXp_0c_Pzy-cf6qrm--fpt_em6sYyx0nRW4BZjLwV3xnVSWGIxk94yS1q38UJQITlvFdkY7nHHFTPeM-bq4opIeg4-Hr3zsplcZ10NaUY9p2Eyaa-jGfTDlzD0eht_a8I4xu1B8P4kSPHX4nLR05AP0zDBxSVrrjhVLWOPgli1itbpV_DDEbQp5pycv02DkT50qWuX-thlhd_ez3-HnsqrwLsTYLI1o08m2CHfcgQJKRS_x8Vl_v-Hb47crraY7jwtooILRP8CRGvBdQ</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Lawson, Tracy</creator><creator>Lefebvre, Stephane</creator><creator>Baker, Neil R.</creator><creator>Morison, James I. L.</creator><creator>Raines, Christine A.</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081001</creationdate><title>Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2</title><author>Lawson, Tracy ; Lefebvre, Stephane ; Baker, Neil R. ; Morison, James I. L. ; Raines, Christine A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-dc71411f876eaed87c2c158fc5c24ebf7737866492ba6f1d695aff55eeee69283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological and medical sciences</topic><topic>Carbon Dioxide - metabolism</topic><topic>Chlorophyll - metabolism</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Guard cells</topic><topic>Leaves</topic><topic>Light</topic><topic>Mesophyll</topic><topic>Mesophyll cells</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - physiology</topic><topic>Nicotiana - radiation effects</topic><topic>Phosphoric Monoester Hydrolases - genetics</topic><topic>Phosphoric Monoester Hydrolases - metabolism</topic><topic>Photosynthesis</topic><topic>Photosynthesis - radiation effects</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - physiology</topic><topic>Plant Leaves - radiation effects</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stomata - enzymology</topic><topic>Plant Stomata - genetics</topic><topic>Plant Stomata - physiology</topic><topic>Plant Stomata - radiation effects</topic><topic>Plants</topic><topic>Research Papers</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawson, Tracy</creatorcontrib><creatorcontrib>Lefebvre, Stephane</creatorcontrib><creatorcontrib>Baker, Neil R.</creatorcontrib><creatorcontrib>Morison, James I. L.</creatorcontrib><creatorcontrib>Raines, Christine A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawson, Tracy</au><au>Lefebvre, Stephane</au><au>Baker, Neil R.</au><au>Morison, James I. L.</au><au>Raines, Christine A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>59</volume><issue>13</issue><spage>3609</spage><epage>3619</epage><pages>3609-3619</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F q ′/F m ′) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO 2 assimilation rates and higher internal CO 2 concentrations. Increasing CO 2 concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C i levels. Together, these data suggest that the primary light-induced opening or CO 2 -dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO 2 .</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>18836187</pmid><doi>10.1093/jxb/ern211</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2008-10, Vol.59 (13), p.3609-3619 |
issn | 0022-0957 1460-2431 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2561148 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Biological and medical sciences Carbon Dioxide - metabolism Chlorophyll - metabolism Fluorescence Fundamental and applied biological sciences. Psychology Guard cells Leaves Light Mesophyll Mesophyll cells Nicotiana - enzymology Nicotiana - genetics Nicotiana - physiology Nicotiana - radiation effects Phosphoric Monoester Hydrolases - genetics Phosphoric Monoester Hydrolases - metabolism Photosynthesis Photosynthesis - radiation effects Plant Leaves - enzymology Plant Leaves - genetics Plant Leaves - physiology Plant Leaves - radiation effects Plant Proteins - genetics Plant Proteins - metabolism Plant Stomata - enzymology Plant Stomata - genetics Plant Stomata - physiology Plant Stomata - radiation effects Plants Research Papers Stomata Stomatal conductance Transgenic plants |
title | Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reductions%20in%20mesophyll%20and%20guard%20cell%20photosynthesis%20impact%20on%20the%20control%20of%20stomatal%20responses%20to%20light%20and%20CO2&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Lawson,%20Tracy&rft.date=2008-10-01&rft.volume=59&rft.issue=13&rft.spage=3609&rft.epage=3619&rft.pages=3609-3619&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jxb/ern211&rft_dat=%3Cjstor_pubme%3E24037670%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19493000&rft_id=info:pmid/18836187&rft_jstor_id=24037670&rft_oup_id=10.1093/jxb/ern211&rfr_iscdi=true |