Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes

Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2006-04, Vol.110 (16), p.8459-8463
Hauptverfasser: Choudhury, Niharendu, Pettitt, B. Montgomery
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8463
container_issue 16
container_start_page 8459
container_title The journal of physical chemistry. B
container_volume 110
creator Choudhury, Niharendu
Pettitt, B. Montgomery
description Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute−solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute−solute term, the solute−solvent interactions, and the remainder that contains pressure−volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water−water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.
doi_str_mv 10.1021/jp056909r
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2538449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67882076</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-59e75a9707de9822f91819a13cf2d2531df68c6a7410ae1ff91b230bd0ad5603</originalsourceid><addsrcrecordid>eNptkd1u1DAQhS0Eoj9wwQugCIlKXKT4Z-0kN5Vg6bZUpRR17y3HcYiXrCfYDmLfoNd9RJ4Er7JaQOLC8hnNp3NGMwi9IPiUYErergbMRYUr_wgdEk5xnl7xeKcFweIAHYWwwphyWoqn6IAIQRln9BCpcxc71Q-bX_cPSXoYNtkckrD1GC24kEXIYmeyW4jGRav6DNrsk1EuW4DXZlvdKAdBw2B1drlpkkUHddJ30I_RhGfoSav6YJ7v_mO0XJwv55f59eeLj_N317nibBZzXpmCq6rARWOqktK2IiWpFGG6pQ3ljDStKLVQxYxgZUib-jVluG6warjA7BidTbbDWK9No9OwXvVy8Hat_EaCsvLfjrOd_Ao_ZPIuZ7MqGbyaDCBEK4O20ehOg3NGR0kwoYyIBJ3sUjx8H02Icm2DNn2vnIExSFGUZdr9FnwzgdpDCN60-0kIltujyf3REvvy79H_kLsrJSCfABui-bnvK_8tBbKCy-XtnWQXN1df3vMPcpH41xOvdJArGL1Li_9P8G-XmK-j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67882076</pqid></control><display><type>article</type><title>Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Choudhury, Niharendu ; Pettitt, B. Montgomery</creator><creatorcontrib>Choudhury, Niharendu ; Pettitt, B. Montgomery ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute−solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute−solute term, the solute−solvent interactions, and the remainder that contains pressure−volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water−water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp056909r</identifier><identifier>PMID: 16623532</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Chemical Phenomena ; Chemistry, Physical ; Computer Simulation ; CONFIGURATION ; ENTHALPY ; Entropy ; Environmental Molecular Sciences Laboratory ; FREE ENERGY ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; PLATES ; Solubility ; SOLUTES ; Solutions ; SOLVENTS ; STABILITY ; Thermodynamics ; WATER ; Water - chemistry</subject><ispartof>The journal of physical chemistry. B, 2006-04, Vol.110 (16), p.8459-8463</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-59e75a9707de9822f91819a13cf2d2531df68c6a7410ae1ff91b230bd0ad5603</citedby><cites>FETCH-LOGICAL-a534t-59e75a9707de9822f91819a13cf2d2531df68c6a7410ae1ff91b230bd0ad5603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp056909r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp056909r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16623532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1012316$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Choudhury, Niharendu</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute−solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute−solute term, the solute−solvent interactions, and the remainder that contains pressure−volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water−water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.</description><subject>Algorithms</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Computer Simulation</subject><subject>CONFIGURATION</subject><subject>ENTHALPY</subject><subject>Entropy</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>FREE ENERGY</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>PLATES</subject><subject>Solubility</subject><subject>SOLUTES</subject><subject>Solutions</subject><subject>SOLVENTS</subject><subject>STABILITY</subject><subject>Thermodynamics</subject><subject>WATER</subject><subject>Water - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkd1u1DAQhS0Eoj9wwQugCIlKXKT4Z-0kN5Vg6bZUpRR17y3HcYiXrCfYDmLfoNd9RJ4Er7JaQOLC8hnNp3NGMwi9IPiUYErergbMRYUr_wgdEk5xnl7xeKcFweIAHYWwwphyWoqn6IAIQRln9BCpcxc71Q-bX_cPSXoYNtkckrD1GC24kEXIYmeyW4jGRav6DNrsk1EuW4DXZlvdKAdBw2B1drlpkkUHddJ30I_RhGfoSav6YJ7v_mO0XJwv55f59eeLj_N317nibBZzXpmCq6rARWOqktK2IiWpFGG6pQ3ljDStKLVQxYxgZUib-jVluG6warjA7BidTbbDWK9No9OwXvVy8Hat_EaCsvLfjrOd_Ao_ZPIuZ7MqGbyaDCBEK4O20ehOg3NGR0kwoYyIBJ3sUjx8H02Icm2DNn2vnIExSFGUZdr9FnwzgdpDCN60-0kIltujyf3REvvy79H_kLsrJSCfABui-bnvK_8tBbKCy-XtnWQXN1df3vMPcpH41xOvdJArGL1Li_9P8G-XmK-j</recordid><startdate>20060427</startdate><enddate>20060427</enddate><creator>Choudhury, Niharendu</creator><creator>Pettitt, B. Montgomery</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20060427</creationdate><title>Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes</title><author>Choudhury, Niharendu ; Pettitt, B. Montgomery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-59e75a9707de9822f91819a13cf2d2531df68c6a7410ae1ff91b230bd0ad5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Computer Simulation</topic><topic>CONFIGURATION</topic><topic>ENTHALPY</topic><topic>Entropy</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>FREE ENERGY</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>PLATES</topic><topic>Solubility</topic><topic>SOLUTES</topic><topic>Solutions</topic><topic>SOLVENTS</topic><topic>STABILITY</topic><topic>Thermodynamics</topic><topic>WATER</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhury, Niharendu</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhury, Niharendu</au><au>Pettitt, B. Montgomery</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2006-04-27</date><risdate>2006</risdate><volume>110</volume><issue>16</issue><spage>8459</spage><epage>8463</epage><pages>8459-8463</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute−solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute−solute term, the solute−solvent interactions, and the remainder that contains pressure−volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water−water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16623532</pmid><doi>10.1021/jp056909r</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2006-04, Vol.110 (16), p.8459-8463
issn 1520-6106
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2538449
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Chemical Phenomena
Chemistry, Physical
Computer Simulation
CONFIGURATION
ENTHALPY
Entropy
Environmental Molecular Sciences Laboratory
FREE ENERGY
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
PLATES
Solubility
SOLUTES
Solutions
SOLVENTS
STABILITY
Thermodynamics
WATER
Water - chemistry
title Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enthalpy%E2%88%92Entropy%20Contributions%20to%20the%20Potential%20of%20Mean%20Force%20of%20Nanoscopic%20Hydrophobic%20Solutes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Choudhury,%20Niharendu&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2006-04-27&rft.volume=110&rft.issue=16&rft.spage=8459&rft.epage=8463&rft.pages=8459-8463&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp056909r&rft_dat=%3Cproquest_pubme%3E67882076%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67882076&rft_id=info:pmid/16623532&rfr_iscdi=true