Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes
Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2006-04, Vol.110 (16), p.8459-8463 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8463 |
---|---|
container_issue | 16 |
container_start_page | 8459 |
container_title | The journal of physical chemistry. B |
container_volume | 110 |
creator | Choudhury, Niharendu Pettitt, B. Montgomery |
description | Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute−solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute−solute term, the solute−solvent interactions, and the remainder that contains pressure−volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water−water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change. |
doi_str_mv | 10.1021/jp056909r |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2538449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67882076</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-59e75a9707de9822f91819a13cf2d2531df68c6a7410ae1ff91b230bd0ad5603</originalsourceid><addsrcrecordid>eNptkd1u1DAQhS0Eoj9wwQugCIlKXKT4Z-0kN5Vg6bZUpRR17y3HcYiXrCfYDmLfoNd9RJ4Er7JaQOLC8hnNp3NGMwi9IPiUYErergbMRYUr_wgdEk5xnl7xeKcFweIAHYWwwphyWoqn6IAIQRln9BCpcxc71Q-bX_cPSXoYNtkckrD1GC24kEXIYmeyW4jGRav6DNrsk1EuW4DXZlvdKAdBw2B1drlpkkUHddJ30I_RhGfoSav6YJ7v_mO0XJwv55f59eeLj_N317nibBZzXpmCq6rARWOqktK2IiWpFGG6pQ3ljDStKLVQxYxgZUib-jVluG6warjA7BidTbbDWK9No9OwXvVy8Hat_EaCsvLfjrOd_Ao_ZPIuZ7MqGbyaDCBEK4O20ehOg3NGR0kwoYyIBJ3sUjx8H02Icm2DNn2vnIExSFGUZdr9FnwzgdpDCN60-0kIltujyf3REvvy79H_kLsrJSCfABui-bnvK_8tBbKCy-XtnWQXN1df3vMPcpH41xOvdJArGL1Li_9P8G-XmK-j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67882076</pqid></control><display><type>article</type><title>Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Choudhury, Niharendu ; Pettitt, B. Montgomery</creator><creatorcontrib>Choudhury, Niharendu ; Pettitt, B. Montgomery ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute−solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute−solute term, the solute−solvent interactions, and the remainder that contains pressure−volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water−water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp056909r</identifier><identifier>PMID: 16623532</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Chemical Phenomena ; Chemistry, Physical ; Computer Simulation ; CONFIGURATION ; ENTHALPY ; Entropy ; Environmental Molecular Sciences Laboratory ; FREE ENERGY ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; PLATES ; Solubility ; SOLUTES ; Solutions ; SOLVENTS ; STABILITY ; Thermodynamics ; WATER ; Water - chemistry</subject><ispartof>The journal of physical chemistry. B, 2006-04, Vol.110 (16), p.8459-8463</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-59e75a9707de9822f91819a13cf2d2531df68c6a7410ae1ff91b230bd0ad5603</citedby><cites>FETCH-LOGICAL-a534t-59e75a9707de9822f91819a13cf2d2531df68c6a7410ae1ff91b230bd0ad5603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp056909r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp056909r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16623532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1012316$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Choudhury, Niharendu</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute−solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute−solute term, the solute−solvent interactions, and the remainder that contains pressure−volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water−water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.</description><subject>Algorithms</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Computer Simulation</subject><subject>CONFIGURATION</subject><subject>ENTHALPY</subject><subject>Entropy</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>FREE ENERGY</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>PLATES</subject><subject>Solubility</subject><subject>SOLUTES</subject><subject>Solutions</subject><subject>SOLVENTS</subject><subject>STABILITY</subject><subject>Thermodynamics</subject><subject>WATER</subject><subject>Water - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkd1u1DAQhS0Eoj9wwQugCIlKXKT4Z-0kN5Vg6bZUpRR17y3HcYiXrCfYDmLfoNd9RJ4Er7JaQOLC8hnNp3NGMwi9IPiUYErergbMRYUr_wgdEk5xnl7xeKcFweIAHYWwwphyWoqn6IAIQRln9BCpcxc71Q-bX_cPSXoYNtkckrD1GC24kEXIYmeyW4jGRav6DNrsk1EuW4DXZlvdKAdBw2B1drlpkkUHddJ30I_RhGfoSav6YJ7v_mO0XJwv55f59eeLj_N317nibBZzXpmCq6rARWOqktK2IiWpFGG6pQ3ljDStKLVQxYxgZUib-jVluG6warjA7BidTbbDWK9No9OwXvVy8Hat_EaCsvLfjrOd_Ao_ZPIuZ7MqGbyaDCBEK4O20ehOg3NGR0kwoYyIBJ3sUjx8H02Icm2DNn2vnIExSFGUZdr9FnwzgdpDCN60-0kIltujyf3REvvy79H_kLsrJSCfABui-bnvK_8tBbKCy-XtnWQXN1df3vMPcpH41xOvdJArGL1Li_9P8G-XmK-j</recordid><startdate>20060427</startdate><enddate>20060427</enddate><creator>Choudhury, Niharendu</creator><creator>Pettitt, B. Montgomery</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20060427</creationdate><title>Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes</title><author>Choudhury, Niharendu ; Pettitt, B. Montgomery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-59e75a9707de9822f91819a13cf2d2531df68c6a7410ae1ff91b230bd0ad5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Computer Simulation</topic><topic>CONFIGURATION</topic><topic>ENTHALPY</topic><topic>Entropy</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>FREE ENERGY</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>PLATES</topic><topic>Solubility</topic><topic>SOLUTES</topic><topic>Solutions</topic><topic>SOLVENTS</topic><topic>STABILITY</topic><topic>Thermodynamics</topic><topic>WATER</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhury, Niharendu</creatorcontrib><creatorcontrib>Pettitt, B. Montgomery</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhury, Niharendu</au><au>Pettitt, B. Montgomery</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2006-04-27</date><risdate>2006</risdate><volume>110</volume><issue>16</issue><spage>8459</spage><epage>8463</epage><pages>8459-8463</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal−isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute−solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute−solute term, the solute−solvent interactions, and the remainder that contains pressure−volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water−water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16623532</pmid><doi>10.1021/jp056909r</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2006-04, Vol.110 (16), p.8459-8463 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2538449 |
source | MEDLINE; American Chemical Society Journals |
subjects | Algorithms Chemical Phenomena Chemistry, Physical Computer Simulation CONFIGURATION ENTHALPY Entropy Environmental Molecular Sciences Laboratory FREE ENERGY INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY PLATES Solubility SOLUTES Solutions SOLVENTS STABILITY Thermodynamics WATER Water - chemistry |
title | Enthalpy−Entropy Contributions to the Potential of Mean Force of Nanoscopic Hydrophobic Solutes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enthalpy%E2%88%92Entropy%20Contributions%20to%20the%20Potential%20of%20Mean%20Force%20of%20Nanoscopic%20Hydrophobic%20Solutes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Choudhury,%20Niharendu&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2006-04-27&rft.volume=110&rft.issue=16&rft.spage=8459&rft.epage=8463&rft.pages=8459-8463&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp056909r&rft_dat=%3Cproquest_pubme%3E67882076%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67882076&rft_id=info:pmid/16623532&rfr_iscdi=true |