A parallel genetic algorithm to discover patterns in genetic markers that indicate predisposition to multifactorial disease

Abstract This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2008-07, Vol.38 (7), p.826-836
Hauptverfasser: Rausch, Tobias, Thomas, Alun, Camp, Nicola J, Cannon-Albright, Lisa A, Facelli, Julio C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 836
container_issue 7
container_start_page 826
container_title Computers in biology and medicine
container_volume 38
creator Rausch, Tobias
Thomas, Alun
Camp, Nicola J
Cannon-Albright, Lisa A
Facelli, Julio C
description Abstract This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene–gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene–gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise.
doi_str_mv 10.1016/j.compbiomed.2008.04.011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2532987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0010482508000723</els_id><sourcerecordid>2733443851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-b8212904553d05a38119fe9d7303f21d2f188c1c07e0cdd9dd93b53b7224e57a3</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhoMobq3-BRkQvOt4kkw2mZuFdfELFrxQr0OaOdOmm5mMSVpY_PNmaNnq3igEDiTveXI-XkIqCjUFevluV9swTGsXBuxqBqBqaGqg9AlZUCXbFQjePCULAAqrRjFxQV6ktAOABjg8JxdUiUYKoRbk13U1mWi8R19tcMTsbGX8JkSXt0OVQ9W5ZMMBY5HljHFMlRsflIOJdxhTlbcml_vOWZOxmiKWrCkkl10YZ8iw99n1xubCNX5mokn4kjzrjU_46hSX5MfHD99vPq9uv376cnN9u7KipXm1VoyyFhoheAfCcEVp22PbSQ68Z7RjPVXKUgsSwXZdWw5fC76WjDUopOFLcnXkTvt1GZjFMZeO9RRdqf9eB-P03y-j2-pNOGgmOGuVLIC3J0AMP_eYsh7KVNB7M2LYJ33ZMiFbxv4ppK0QTMJMfPNIuAv7OJYpaAqcA0hV4pKoo8rGkFLE_qFmCno2gt7psxH0bAQNjS5GKKmv_-z5nHjafBG8PwqwTP7gMOpkHY62rC6izboL7n9-uXoEsd6NxQX-Du8xnXvSiWnQ32ZDzn4EVbwoGee_AbGK4TE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033007810</pqid></control><display><type>article</type><title>A parallel genetic algorithm to discover patterns in genetic markers that indicate predisposition to multifactorial disease</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Rausch, Tobias ; Thomas, Alun ; Camp, Nicola J ; Cannon-Albright, Lisa A ; Facelli, Julio C</creator><creatorcontrib>Rausch, Tobias ; Thomas, Alun ; Camp, Nicola J ; Cannon-Albright, Lisa A ; Facelli, Julio C</creatorcontrib><description>Abstract This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene–gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene–gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2008.04.011</identifier><identifier>PMID: 18547558</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Correlation analysis ; Data mining ; Epigenesis, Genetic ; Genetic Markers ; Genetic Predisposition to Disease ; Gene–gene interactions ; Internal Medicine ; Multifactorial diseases ; Other ; Parallel genetic algorithm ; Pattern recognition</subject><ispartof>Computers in biology and medicine, 2008-07, Vol.38 (7), p.826-836</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-b8212904553d05a38119fe9d7303f21d2f188c1c07e0cdd9dd93b53b7224e57a3</citedby><cites>FETCH-LOGICAL-c591t-b8212904553d05a38119fe9d7303f21d2f188c1c07e0cdd9dd93b53b7224e57a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1033007810?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993,64383,64385,64387,72239</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18547558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rausch, Tobias</creatorcontrib><creatorcontrib>Thomas, Alun</creatorcontrib><creatorcontrib>Camp, Nicola J</creatorcontrib><creatorcontrib>Cannon-Albright, Lisa A</creatorcontrib><creatorcontrib>Facelli, Julio C</creatorcontrib><title>A parallel genetic algorithm to discover patterns in genetic markers that indicate predisposition to multifactorial disease</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene–gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene–gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise.</description><subject>Algorithms</subject><subject>Correlation analysis</subject><subject>Data mining</subject><subject>Epigenesis, Genetic</subject><subject>Genetic Markers</subject><subject>Genetic Predisposition to Disease</subject><subject>Gene–gene interactions</subject><subject>Internal Medicine</subject><subject>Multifactorial diseases</subject><subject>Other</subject><subject>Parallel genetic algorithm</subject><subject>Pattern recognition</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl2LEzEUhoMobq3-BRkQvOt4kkw2mZuFdfELFrxQr0OaOdOmm5mMSVpY_PNmaNnq3igEDiTveXI-XkIqCjUFevluV9swTGsXBuxqBqBqaGqg9AlZUCXbFQjePCULAAqrRjFxQV6ktAOABjg8JxdUiUYKoRbk13U1mWi8R19tcMTsbGX8JkSXt0OVQ9W5ZMMBY5HljHFMlRsflIOJdxhTlbcml_vOWZOxmiKWrCkkl10YZ8iw99n1xubCNX5mokn4kjzrjU_46hSX5MfHD99vPq9uv376cnN9u7KipXm1VoyyFhoheAfCcEVp22PbSQ68Z7RjPVXKUgsSwXZdWw5fC76WjDUopOFLcnXkTvt1GZjFMZeO9RRdqf9eB-P03y-j2-pNOGgmOGuVLIC3J0AMP_eYsh7KVNB7M2LYJ33ZMiFbxv4ppK0QTMJMfPNIuAv7OJYpaAqcA0hV4pKoo8rGkFLE_qFmCno2gt7psxH0bAQNjS5GKKmv_-z5nHjafBG8PwqwTP7gMOpkHY62rC6izboL7n9-uXoEsd6NxQX-Du8xnXvSiWnQ32ZDzn4EVbwoGee_AbGK4TE</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Rausch, Tobias</creator><creator>Thomas, Alun</creator><creator>Camp, Nicola J</creator><creator>Cannon-Albright, Lisa A</creator><creator>Facelli, Julio C</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>A parallel genetic algorithm to discover patterns in genetic markers that indicate predisposition to multifactorial disease</title><author>Rausch, Tobias ; Thomas, Alun ; Camp, Nicola J ; Cannon-Albright, Lisa A ; Facelli, Julio C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-b8212904553d05a38119fe9d7303f21d2f188c1c07e0cdd9dd93b53b7224e57a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Correlation analysis</topic><topic>Data mining</topic><topic>Epigenesis, Genetic</topic><topic>Genetic Markers</topic><topic>Genetic Predisposition to Disease</topic><topic>Gene–gene interactions</topic><topic>Internal Medicine</topic><topic>Multifactorial diseases</topic><topic>Other</topic><topic>Parallel genetic algorithm</topic><topic>Pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rausch, Tobias</creatorcontrib><creatorcontrib>Thomas, Alun</creatorcontrib><creatorcontrib>Camp, Nicola J</creatorcontrib><creatorcontrib>Cannon-Albright, Lisa A</creatorcontrib><creatorcontrib>Facelli, Julio C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rausch, Tobias</au><au>Thomas, Alun</au><au>Camp, Nicola J</au><au>Cannon-Albright, Lisa A</au><au>Facelli, Julio C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parallel genetic algorithm to discover patterns in genetic markers that indicate predisposition to multifactorial disease</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>38</volume><issue>7</issue><spage>826</spage><epage>836</epage><pages>826-836</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene–gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene–gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18547558</pmid><doi>10.1016/j.compbiomed.2008.04.011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2008-07, Vol.38 (7), p.826-836
issn 0010-4825
1879-0534
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2532987
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Algorithms
Correlation analysis
Data mining
Epigenesis, Genetic
Genetic Markers
Genetic Predisposition to Disease
Gene–gene interactions
Internal Medicine
Multifactorial diseases
Other
Parallel genetic algorithm
Pattern recognition
title A parallel genetic algorithm to discover patterns in genetic markers that indicate predisposition to multifactorial disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parallel%20genetic%20algorithm%20to%20discover%20patterns%20in%20genetic%20markers%20that%20indicate%20predisposition%20to%20multifactorial%20disease&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Rausch,%20Tobias&rft.date=2008-07-01&rft.volume=38&rft.issue=7&rft.spage=826&rft.epage=836&rft.pages=826-836&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2008.04.011&rft_dat=%3Cproquest_pubme%3E2733443851%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033007810&rft_id=info:pmid/18547558&rft_els_id=1_s2_0_S0010482508000723&rfr_iscdi=true