Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility: In Vitro and In Vivo Characterization
The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2007-01, Vol.8 (1), p.202-208 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 1 |
container_start_page | 202 |
container_title | Biomacromolecules |
container_volume | 8 |
creator | Lee, Sang Cheon Huh, Kang Moo Lee, Jaehwi Cho, Yong Woo Galinsky, Raymond E Park, Kinam |
description | The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(d,l-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems. |
doi_str_mv | 10.1021/bm060307b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2532792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68406165</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-6088c24e64727946ab463659e0004912910aa20135fb29022bfc9f57b2ef8c23</originalsourceid><addsrcrecordid>eNptkc-KFDEQxoMo7rp68AUkFwUPrUk6fzoeBBlWd2HFBRevoTqTdrKmkzHpXhxPXn1Nn8SMM-woeEoV9cv3FfUh9JiSF5Qw-rIfiSQtUf0ddEwFkw2XhN39U4tGKa2O0INSrgkhuuXiPjqiihHZke4YfTnbLHOaclp7iy9T2Iwu1-q9ty4EV_CQMj6NK4jWLfEl2OAn-OYC_pjC3PvabV79-vETn0f8yVcVDHG5a24SXqwgg52q4HeYfIoP0b0BQnGP9u8Junp7erU4ay4-vDtfvLlogGs9NZJ0nWXcSa6Y0lxCz2UrhXZ1f64p05QAMEJbMfRME8b6wepBqJ65oX5sT9Drnex67ke3tC5OGYJZZz9C3pgE3vw7iX5lPqcbw0RbDbcCz_YCOX2dXZnM6Mv2HhBdmouRHSeSSlHB5zvQ5lRKdsOtCSVmm4y5TaayT_7e6kDuo6jA0z0AxUIYcr25Lweu40JpKg8c2GKu05xjveV_DH8DxzejmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68406165</pqid></control><display><type>article</type><title>Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility: In Vitro and In Vivo Characterization</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lee, Sang Cheon ; Huh, Kang Moo ; Lee, Jaehwi ; Cho, Yong Woo ; Galinsky, Raymond E ; Park, Kinam</creator><creatorcontrib>Lee, Sang Cheon ; Huh, Kang Moo ; Lee, Jaehwi ; Cho, Yong Woo ; Galinsky, Raymond E ; Park, Kinam</creatorcontrib><description>The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(d,l-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm060307b</identifier><identifier>PMID: 17206808</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Administration, Oral ; Animals ; Antineoplastic Agents, Phytogenic - administration & dosage ; Antineoplastic Agents, Phytogenic - chemistry ; Applied sciences ; Biological and medical sciences ; Calorimetry, Differential Scanning ; Chemistry, Pharmaceutical - methods ; Drug Delivery Systems ; Exact sciences and technology ; General pharmacology ; Infusions, Intravenous ; Medical sciences ; Micelles ; Organic polymers ; Paclitaxel - administration & dosage ; Paclitaxel - chemistry ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Physicochemistry of polymers ; Polyethylene Glycols - chemistry ; Polymers - chemistry ; Properties and characterization ; Rats ; Solubility ; Solution and gel properties ; Spectrometry, Fluorescence ; Temperature</subject><ispartof>Biomacromolecules, 2007-01, Vol.8 (1), p.202-208</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-6088c24e64727946ab463659e0004912910aa20135fb29022bfc9f57b2ef8c23</citedby><cites>FETCH-LOGICAL-a499t-6088c24e64727946ab463659e0004912910aa20135fb29022bfc9f57b2ef8c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm060307b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm060307b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18457916$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17206808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sang Cheon</creatorcontrib><creatorcontrib>Huh, Kang Moo</creatorcontrib><creatorcontrib>Lee, Jaehwi</creatorcontrib><creatorcontrib>Cho, Yong Woo</creatorcontrib><creatorcontrib>Galinsky, Raymond E</creatorcontrib><creatorcontrib>Park, Kinam</creatorcontrib><title>Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility: In Vitro and In Vivo Characterization</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(d,l-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems.</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - administration & dosage</subject><subject>Antineoplastic Agents, Phytogenic - chemistry</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Calorimetry, Differential Scanning</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Drug Delivery Systems</subject><subject>Exact sciences and technology</subject><subject>General pharmacology</subject><subject>Infusions, Intravenous</subject><subject>Medical sciences</subject><subject>Micelles</subject><subject>Organic polymers</subject><subject>Paclitaxel - administration & dosage</subject><subject>Paclitaxel - chemistry</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Physicochemistry of polymers</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemistry</subject><subject>Properties and characterization</subject><subject>Rats</subject><subject>Solubility</subject><subject>Solution and gel properties</subject><subject>Spectrometry, Fluorescence</subject><subject>Temperature</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc-KFDEQxoMo7rp68AUkFwUPrUk6fzoeBBlWd2HFBRevoTqTdrKmkzHpXhxPXn1Nn8SMM-woeEoV9cv3FfUh9JiSF5Qw-rIfiSQtUf0ddEwFkw2XhN39U4tGKa2O0INSrgkhuuXiPjqiihHZke4YfTnbLHOaclp7iy9T2Iwu1-q9ty4EV_CQMj6NK4jWLfEl2OAn-OYC_pjC3PvabV79-vETn0f8yVcVDHG5a24SXqwgg52q4HeYfIoP0b0BQnGP9u8Junp7erU4ay4-vDtfvLlogGs9NZJ0nWXcSa6Y0lxCz2UrhXZ1f64p05QAMEJbMfRME8b6wepBqJ65oX5sT9Drnex67ke3tC5OGYJZZz9C3pgE3vw7iX5lPqcbw0RbDbcCz_YCOX2dXZnM6Mv2HhBdmouRHSeSSlHB5zvQ5lRKdsOtCSVmm4y5TaayT_7e6kDuo6jA0z0AxUIYcr25Lweu40JpKg8c2GKu05xjveV_DH8DxzejmA</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Lee, Sang Cheon</creator><creator>Huh, Kang Moo</creator><creator>Lee, Jaehwi</creator><creator>Cho, Yong Woo</creator><creator>Galinsky, Raymond E</creator><creator>Park, Kinam</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070101</creationdate><title>Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility: In Vitro and In Vivo Characterization</title><author>Lee, Sang Cheon ; Huh, Kang Moo ; Lee, Jaehwi ; Cho, Yong Woo ; Galinsky, Raymond E ; Park, Kinam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-6088c24e64727946ab463659e0004912910aa20135fb29022bfc9f57b2ef8c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - administration & dosage</topic><topic>Antineoplastic Agents, Phytogenic - chemistry</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Calorimetry, Differential Scanning</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Drug Delivery Systems</topic><topic>Exact sciences and technology</topic><topic>General pharmacology</topic><topic>Infusions, Intravenous</topic><topic>Medical sciences</topic><topic>Micelles</topic><topic>Organic polymers</topic><topic>Paclitaxel - administration & dosage</topic><topic>Paclitaxel - chemistry</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Physicochemistry of polymers</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemistry</topic><topic>Properties and characterization</topic><topic>Rats</topic><topic>Solubility</topic><topic>Solution and gel properties</topic><topic>Spectrometry, Fluorescence</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang Cheon</creatorcontrib><creatorcontrib>Huh, Kang Moo</creatorcontrib><creatorcontrib>Lee, Jaehwi</creatorcontrib><creatorcontrib>Cho, Yong Woo</creatorcontrib><creatorcontrib>Galinsky, Raymond E</creatorcontrib><creatorcontrib>Park, Kinam</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang Cheon</au><au>Huh, Kang Moo</au><au>Lee, Jaehwi</au><au>Cho, Yong Woo</au><au>Galinsky, Raymond E</au><au>Park, Kinam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility: In Vitro and In Vivo Characterization</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>8</volume><issue>1</issue><spage>202</spage><epage>208</epage><pages>202-208</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(d,l-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17206808</pmid><doi>10.1021/bm060307b</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2007-01, Vol.8 (1), p.202-208 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2532792 |
source | MEDLINE; ACS Publications |
subjects | Administration, Oral Animals Antineoplastic Agents, Phytogenic - administration & dosage Antineoplastic Agents, Phytogenic - chemistry Applied sciences Biological and medical sciences Calorimetry, Differential Scanning Chemistry, Pharmaceutical - methods Drug Delivery Systems Exact sciences and technology General pharmacology Infusions, Intravenous Medical sciences Micelles Organic polymers Paclitaxel - administration & dosage Paclitaxel - chemistry Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Physicochemistry of polymers Polyethylene Glycols - chemistry Polymers - chemistry Properties and characterization Rats Solubility Solution and gel properties Spectrometry, Fluorescence Temperature |
title | Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility: In Vitro and In Vivo Characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrotropic%20Polymeric%20Micelles%20for%20Enhanced%20Paclitaxel%20Solubility:%E2%80%89%20In%20Vitro%20and%20In%20Vivo%20Characterization&rft.jtitle=Biomacromolecules&rft.au=Lee,%20Sang%20Cheon&rft.date=2007-01-01&rft.volume=8&rft.issue=1&rft.spage=202&rft.epage=208&rft.pages=202-208&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm060307b&rft_dat=%3Cproquest_pubme%3E68406165%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68406165&rft_id=info:pmid/17206808&rfr_iscdi=true |