Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility:  In Vitro and In Vivo Characterization

The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2007-01, Vol.8 (1), p.202-208
Hauptverfasser: Lee, Sang Cheon, Huh, Kang Moo, Lee, Jaehwi, Cho, Yong Woo, Galinsky, Raymond E, Park, Kinam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 1
container_start_page 202
container_title Biomacromolecules
container_volume 8
creator Lee, Sang Cheon
Huh, Kang Moo
Lee, Jaehwi
Cho, Yong Woo
Galinsky, Raymond E
Park, Kinam
description The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(d,l-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems.
doi_str_mv 10.1021/bm060307b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2532792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68406165</sourcerecordid><originalsourceid>FETCH-LOGICAL-a499t-6088c24e64727946ab463659e0004912910aa20135fb29022bfc9f57b2ef8c23</originalsourceid><addsrcrecordid>eNptkc-KFDEQxoMo7rp68AUkFwUPrUk6fzoeBBlWd2HFBRevoTqTdrKmkzHpXhxPXn1Nn8SMM-woeEoV9cv3FfUh9JiSF5Qw-rIfiSQtUf0ddEwFkw2XhN39U4tGKa2O0INSrgkhuuXiPjqiihHZke4YfTnbLHOaclp7iy9T2Iwu1-q9ty4EV_CQMj6NK4jWLfEl2OAn-OYC_pjC3PvabV79-vETn0f8yVcVDHG5a24SXqwgg52q4HeYfIoP0b0BQnGP9u8Junp7erU4ay4-vDtfvLlogGs9NZJ0nWXcSa6Y0lxCz2UrhXZ1f64p05QAMEJbMfRME8b6wepBqJ65oX5sT9Drnex67ke3tC5OGYJZZz9C3pgE3vw7iX5lPqcbw0RbDbcCz_YCOX2dXZnM6Mv2HhBdmouRHSeSSlHB5zvQ5lRKdsOtCSVmm4y5TaayT_7e6kDuo6jA0z0AxUIYcr25Lweu40JpKg8c2GKu05xjveV_DH8DxzejmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68406165</pqid></control><display><type>article</type><title>Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility:  In Vitro and In Vivo Characterization</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lee, Sang Cheon ; Huh, Kang Moo ; Lee, Jaehwi ; Cho, Yong Woo ; Galinsky, Raymond E ; Park, Kinam</creator><creatorcontrib>Lee, Sang Cheon ; Huh, Kang Moo ; Lee, Jaehwi ; Cho, Yong Woo ; Galinsky, Raymond E ; Park, Kinam</creatorcontrib><description>The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(d,l-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm060307b</identifier><identifier>PMID: 17206808</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Administration, Oral ; Animals ; Antineoplastic Agents, Phytogenic - administration &amp; dosage ; Antineoplastic Agents, Phytogenic - chemistry ; Applied sciences ; Biological and medical sciences ; Calorimetry, Differential Scanning ; Chemistry, Pharmaceutical - methods ; Drug Delivery Systems ; Exact sciences and technology ; General pharmacology ; Infusions, Intravenous ; Medical sciences ; Micelles ; Organic polymers ; Paclitaxel - administration &amp; dosage ; Paclitaxel - chemistry ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Physicochemistry of polymers ; Polyethylene Glycols - chemistry ; Polymers - chemistry ; Properties and characterization ; Rats ; Solubility ; Solution and gel properties ; Spectrometry, Fluorescence ; Temperature</subject><ispartof>Biomacromolecules, 2007-01, Vol.8 (1), p.202-208</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a499t-6088c24e64727946ab463659e0004912910aa20135fb29022bfc9f57b2ef8c23</citedby><cites>FETCH-LOGICAL-a499t-6088c24e64727946ab463659e0004912910aa20135fb29022bfc9f57b2ef8c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm060307b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm060307b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18457916$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17206808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sang Cheon</creatorcontrib><creatorcontrib>Huh, Kang Moo</creatorcontrib><creatorcontrib>Lee, Jaehwi</creatorcontrib><creatorcontrib>Cho, Yong Woo</creatorcontrib><creatorcontrib>Galinsky, Raymond E</creatorcontrib><creatorcontrib>Park, Kinam</creatorcontrib><title>Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility:  In Vitro and In Vivo Characterization</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(d,l-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems.</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>Antineoplastic Agents, Phytogenic - administration &amp; dosage</subject><subject>Antineoplastic Agents, Phytogenic - chemistry</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Calorimetry, Differential Scanning</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Drug Delivery Systems</subject><subject>Exact sciences and technology</subject><subject>General pharmacology</subject><subject>Infusions, Intravenous</subject><subject>Medical sciences</subject><subject>Micelles</subject><subject>Organic polymers</subject><subject>Paclitaxel - administration &amp; dosage</subject><subject>Paclitaxel - chemistry</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Physicochemistry of polymers</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemistry</subject><subject>Properties and characterization</subject><subject>Rats</subject><subject>Solubility</subject><subject>Solution and gel properties</subject><subject>Spectrometry, Fluorescence</subject><subject>Temperature</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc-KFDEQxoMo7rp68AUkFwUPrUk6fzoeBBlWd2HFBRevoTqTdrKmkzHpXhxPXn1Nn8SMM-woeEoV9cv3FfUh9JiSF5Qw-rIfiSQtUf0ddEwFkw2XhN39U4tGKa2O0INSrgkhuuXiPjqiihHZke4YfTnbLHOaclp7iy9T2Iwu1-q9ty4EV_CQMj6NK4jWLfEl2OAn-OYC_pjC3PvabV79-vETn0f8yVcVDHG5a24SXqwgg52q4HeYfIoP0b0BQnGP9u8Junp7erU4ay4-vDtfvLlogGs9NZJ0nWXcSa6Y0lxCz2UrhXZ1f64p05QAMEJbMfRME8b6wepBqJ65oX5sT9Drnex67ke3tC5OGYJZZz9C3pgE3vw7iX5lPqcbw0RbDbcCz_YCOX2dXZnM6Mv2HhBdmouRHSeSSlHB5zvQ5lRKdsOtCSVmm4y5TaayT_7e6kDuo6jA0z0AxUIYcr25Lweu40JpKg8c2GKu05xjveV_DH8DxzejmA</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Lee, Sang Cheon</creator><creator>Huh, Kang Moo</creator><creator>Lee, Jaehwi</creator><creator>Cho, Yong Woo</creator><creator>Galinsky, Raymond E</creator><creator>Park, Kinam</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070101</creationdate><title>Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility:  In Vitro and In Vivo Characterization</title><author>Lee, Sang Cheon ; Huh, Kang Moo ; Lee, Jaehwi ; Cho, Yong Woo ; Galinsky, Raymond E ; Park, Kinam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a499t-6088c24e64727946ab463659e0004912910aa20135fb29022bfc9f57b2ef8c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>Antineoplastic Agents, Phytogenic - administration &amp; dosage</topic><topic>Antineoplastic Agents, Phytogenic - chemistry</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Calorimetry, Differential Scanning</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Drug Delivery Systems</topic><topic>Exact sciences and technology</topic><topic>General pharmacology</topic><topic>Infusions, Intravenous</topic><topic>Medical sciences</topic><topic>Micelles</topic><topic>Organic polymers</topic><topic>Paclitaxel - administration &amp; dosage</topic><topic>Paclitaxel - chemistry</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Physicochemistry of polymers</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemistry</topic><topic>Properties and characterization</topic><topic>Rats</topic><topic>Solubility</topic><topic>Solution and gel properties</topic><topic>Spectrometry, Fluorescence</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang Cheon</creatorcontrib><creatorcontrib>Huh, Kang Moo</creatorcontrib><creatorcontrib>Lee, Jaehwi</creatorcontrib><creatorcontrib>Cho, Yong Woo</creatorcontrib><creatorcontrib>Galinsky, Raymond E</creatorcontrib><creatorcontrib>Park, Kinam</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang Cheon</au><au>Huh, Kang Moo</au><au>Lee, Jaehwi</au><au>Cho, Yong Woo</au><au>Galinsky, Raymond E</au><au>Park, Kinam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility:  In Vitro and In Vivo Characterization</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>8</volume><issue>1</issue><spage>202</spage><epage>208</epage><pages>202-208</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>The purpose of this investigation was to characterize the in vitro stability and in vivo disposition of paclitaxel in rats after solubilization of paclitaxel into hydrotropic polymeric micelles. The amphiphilic block copolymers consisted of a micellar shell-forming poly(ethylene glycol) (PEG) block and a core-forming poly(2-(4-vinylbenzyloxy)-N,N-diethylnicotinamide) (P(VBODENA)) block. N,N-Diethylnicotinamide (DENA) in the micellar inner core resulted in effective paclitaxel solubilization and stabilization. Solubilization of paclitaxel using polymeric micelles of poly(ethylene glycol)-b-P(d,l-lactide) (PEG-b-PLA) served as a control for the stability study. Up to 37.4 wt % paclitaxel could be loaded in PEG-b-P(VBODENA) micelles, whereas the maximum loading amount for PEG-b-PLA micelles was 27.6 wt %. Thermal analysis showed that paclitaxel in the polymeric micelles existed in the molecularly dispersed amorphous state even at loadings over 30 wt %. Paclitaxel-loaded hydrotropic polymeric micelles retained their stability in water for weeks, whereas paclitaxel-loaded PEG-b-PLA micelles precipitated in a few days. Hydrotropic polymer micelles were more effective than PEG-PLA micelle formulations in inhibiting the proliferation of human cancer cells. Paclitaxel in hydrotropic polymer micelles was administered orally (3.8 mg/kg), intravenously (2.5 mg/kg), or via the portal vein (2.5 mg/kg) to rats. The oral bioavailability was 12.4% of the intravenous administration. Our data suggest that polymeric micelles with a hydrotropic structure are superior as a carrier of paclitaxel due to a high solubilizing capacity combined with long-term stability, which has not been accomplished by other existing polymeric micelle systems.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17206808</pmid><doi>10.1021/bm060307b</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2007-01, Vol.8 (1), p.202-208
issn 1525-7797
1526-4602
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2532792
source MEDLINE; ACS Publications
subjects Administration, Oral
Animals
Antineoplastic Agents, Phytogenic - administration & dosage
Antineoplastic Agents, Phytogenic - chemistry
Applied sciences
Biological and medical sciences
Calorimetry, Differential Scanning
Chemistry, Pharmaceutical - methods
Drug Delivery Systems
Exact sciences and technology
General pharmacology
Infusions, Intravenous
Medical sciences
Micelles
Organic polymers
Paclitaxel - administration & dosage
Paclitaxel - chemistry
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Physicochemistry of polymers
Polyethylene Glycols - chemistry
Polymers - chemistry
Properties and characterization
Rats
Solubility
Solution and gel properties
Spectrometry, Fluorescence
Temperature
title Hydrotropic Polymeric Micelles for Enhanced Paclitaxel Solubility:  In Vitro and In Vivo Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrotropic%20Polymeric%20Micelles%20for%20Enhanced%20Paclitaxel%20Solubility:%E2%80%89%20In%20Vitro%20and%20In%20Vivo%20Characterization&rft.jtitle=Biomacromolecules&rft.au=Lee,%20Sang%20Cheon&rft.date=2007-01-01&rft.volume=8&rft.issue=1&rft.spage=202&rft.epage=208&rft.pages=202-208&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm060307b&rft_dat=%3Cproquest_pubme%3E68406165%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68406165&rft_id=info:pmid/17206808&rfr_iscdi=true