Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity

In multicellular epithelial tissues, the orientation of polarity of each cell must be coordinated. Previously, we reported that for Madin–Darby canine kidney cells in three‐dimensional collagen gel culture, blockade of β1‐integrin by the AIIB2 antibody or expression of dominant‐negative Rac1N17 led...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2008-09, Vol.9 (9), p.923-929
Hauptverfasser: Yu, Wei, Shewan, Annette M, Brakeman, Paul, Eastburn, Dennis J, Datta, Anirban, Bryant, David M, Fan, Qi-Wen, Weiss, William A, Zegers, Mirjam M P, Mostov, Keith E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 929
container_issue 9
container_start_page 923
container_title EMBO reports
container_volume 9
creator Yu, Wei
Shewan, Annette M
Brakeman, Paul
Eastburn, Dennis J
Datta, Anirban
Bryant, David M
Fan, Qi-Wen
Weiss, William A
Zegers, Mirjam M P
Mostov, Keith E
description In multicellular epithelial tissues, the orientation of polarity of each cell must be coordinated. Previously, we reported that for Madin–Darby canine kidney cells in three‐dimensional collagen gel culture, blockade of β1‐integrin by the AIIB2 antibody or expression of dominant‐negative Rac1N17 led to an inversion of polarity, such that the apical surfaces of the cells were misorientated towards the extracellular matrix. Here, we show that this process results from the activation of RhoA. Knockdown of RhoA by short hairpin RNA reverses the inverted orientation of polarity, resulting in normal cysts. Inhibition of RhoA downstream effectors, Rho kinase (ROCK I) and myosin II, has similar effects. We conclude that the RhoA–ROCK I–myosin II pathway controls the inversion of orientation of epithelial polarity caused by AIIB2 or Rac1N17. These results might be relevant to the hyperactivation of RhoA and disruption of normal polarity frequently observed in human epithelial cancers.
doi_str_mv 10.1038/embor.2008.135
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2529350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69495087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6385-3a74f65b1527fdf1ad90728742ead47196da137dac88dd43ee6ed61fad2c27913</originalsourceid><addsrcrecordid>eNqFkc1v0zAAxSMEYmNw5YgsDpxI54_464K0VWOEjU2qgO1mubGzeiR2sdNC_3tcUm2AhHbxh_x7z89-RfESwQmCRBzafh7iBEMoJojQR8U-qpgsCeLi8W6NMbreK56ldAshpJKLp8UeEoxBTuF-cV37dejWtrd-AKEFs0U4egtml9MzUAPtDeg3ITkP6hrk0fm1jYM1IESXBXpwwW9VdumGhe2c7sAydDq6YfO8eNLqLtkXu_mg-PL-5PP0Q3l-eVpPj87LhhFBS6J51TI6RxTz1rRIGwk5FrzCVpuKI8mMRoQb3QhhTEWsZdYw1GqDG8wlIgfFu9F3uZr31jQ5VtSdWkbX67hRQTv194l3C3UT1gpTLAmF2eDNziCG7yubBtW71Niu096GVVJMVpJCwR8EkawE4qzK4Ot_wNuwij7_gsJQ5IdKyDI0GaEmhpSibe8iI6i21arf1apttSpXmwWv_nzoPb7rMgN8BH64zm4esFMnn45n281ofTgqUxb5GxvvA_83TDkqXBrsz7u7dPymGCecqquLU0XQ1ZRcfPyqzsgvavnQQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208527906</pqid></control><display><type>article</type><title>Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Yu, Wei ; Shewan, Annette M ; Brakeman, Paul ; Eastburn, Dennis J ; Datta, Anirban ; Bryant, David M ; Fan, Qi-Wen ; Weiss, William A ; Zegers, Mirjam M P ; Mostov, Keith E</creator><creatorcontrib>Yu, Wei ; Shewan, Annette M ; Brakeman, Paul ; Eastburn, Dennis J ; Datta, Anirban ; Bryant, David M ; Fan, Qi-Wen ; Weiss, William A ; Zegers, Mirjam M P ; Mostov, Keith E</creatorcontrib><description>In multicellular epithelial tissues, the orientation of polarity of each cell must be coordinated. Previously, we reported that for Madin–Darby canine kidney cells in three‐dimensional collagen gel culture, blockade of β1‐integrin by the AIIB2 antibody or expression of dominant‐negative Rac1N17 led to an inversion of polarity, such that the apical surfaces of the cells were misorientated towards the extracellular matrix. Here, we show that this process results from the activation of RhoA. Knockdown of RhoA by short hairpin RNA reverses the inverted orientation of polarity, resulting in normal cysts. Inhibition of RhoA downstream effectors, Rho kinase (ROCK I) and myosin II, has similar effects. We conclude that the RhoA–ROCK I–myosin II pathway controls the inversion of orientation of epithelial polarity caused by AIIB2 or Rac1N17. These results might be relevant to the hyperactivation of RhoA and disruption of normal polarity frequently observed in human epithelial cancers.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>EISSN: 1469-221X</identifier><identifier>DOI: 10.1038/embor.2008.135</identifier><identifier>PMID: 18660750</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; Blotting, Western ; Cell culture ; Cell Line ; Cell Polarity ; Cellular biology ; Dogs ; EMBO11 ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; epithelial polarity ; Humans ; Kidneys ; Molecular biology ; myosin II ; Myosin Type II - genetics ; Myosin Type II - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; rho-Associated Kinases - genetics ; rho-Associated Kinases - metabolism ; RhoA ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; Ribonucleic acid ; RNA ; RNA, Small Interfering - genetics ; ROCK I ; Rocks ; Scientific Report ; Transfection ; β1-integrin</subject><ispartof>EMBO reports, 2008-09, Vol.9 (9), p.923-929</ispartof><rights>European Molecular Biology Organization 2008</rights><rights>Copyright © 2008 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Sep 2008</rights><rights>Copyright © 2008, European Molecular Biology Organization 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6385-3a74f65b1527fdf1ad90728742ead47196da137dac88dd43ee6ed61fad2c27913</citedby><cites>FETCH-LOGICAL-c6385-3a74f65b1527fdf1ad90728742ead47196da137dac88dd43ee6ed61fad2c27913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2529350/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2529350/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18660750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Shewan, Annette M</creatorcontrib><creatorcontrib>Brakeman, Paul</creatorcontrib><creatorcontrib>Eastburn, Dennis J</creatorcontrib><creatorcontrib>Datta, Anirban</creatorcontrib><creatorcontrib>Bryant, David M</creatorcontrib><creatorcontrib>Fan, Qi-Wen</creatorcontrib><creatorcontrib>Weiss, William A</creatorcontrib><creatorcontrib>Zegers, Mirjam M P</creatorcontrib><creatorcontrib>Mostov, Keith E</creatorcontrib><title>Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>In multicellular epithelial tissues, the orientation of polarity of each cell must be coordinated. Previously, we reported that for Madin–Darby canine kidney cells in three‐dimensional collagen gel culture, blockade of β1‐integrin by the AIIB2 antibody or expression of dominant‐negative Rac1N17 led to an inversion of polarity, such that the apical surfaces of the cells were misorientated towards the extracellular matrix. Here, we show that this process results from the activation of RhoA. Knockdown of RhoA by short hairpin RNA reverses the inverted orientation of polarity, resulting in normal cysts. Inhibition of RhoA downstream effectors, Rho kinase (ROCK I) and myosin II, has similar effects. We conclude that the RhoA–ROCK I–myosin II pathway controls the inversion of orientation of epithelial polarity caused by AIIB2 or Rac1N17. These results might be relevant to the hyperactivation of RhoA and disruption of normal polarity frequently observed in human epithelial cancers.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>Cell Polarity</subject><subject>Cellular biology</subject><subject>Dogs</subject><subject>EMBO11</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>epithelial polarity</subject><subject>Humans</subject><subject>Kidneys</subject><subject>Molecular biology</subject><subject>myosin II</subject><subject>Myosin Type II - genetics</subject><subject>Myosin Type II - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>rho-Associated Kinases - genetics</subject><subject>rho-Associated Kinases - metabolism</subject><subject>RhoA</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering - genetics</subject><subject>ROCK I</subject><subject>Rocks</subject><subject>Scientific Report</subject><subject>Transfection</subject><subject>β1-integrin</subject><issn>1469-221X</issn><issn>1469-3178</issn><issn>1469-221X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1v0zAAxSMEYmNw5YgsDpxI54_464K0VWOEjU2qgO1mubGzeiR2sdNC_3tcUm2AhHbxh_x7z89-RfESwQmCRBzafh7iBEMoJojQR8U-qpgsCeLi8W6NMbreK56ldAshpJKLp8UeEoxBTuF-cV37dejWtrd-AKEFs0U4egtml9MzUAPtDeg3ITkP6hrk0fm1jYM1IESXBXpwwW9VdumGhe2c7sAydDq6YfO8eNLqLtkXu_mg-PL-5PP0Q3l-eVpPj87LhhFBS6J51TI6RxTz1rRIGwk5FrzCVpuKI8mMRoQb3QhhTEWsZdYw1GqDG8wlIgfFu9F3uZr31jQ5VtSdWkbX67hRQTv194l3C3UT1gpTLAmF2eDNziCG7yubBtW71Niu096GVVJMVpJCwR8EkawE4qzK4Ot_wNuwij7_gsJQ5IdKyDI0GaEmhpSibe8iI6i21arf1apttSpXmwWv_nzoPb7rMgN8BH64zm4esFMnn45n281ofTgqUxb5GxvvA_83TDkqXBrsz7u7dPymGCecqquLU0XQ1ZRcfPyqzsgvavnQQg</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Yu, Wei</creator><creator>Shewan, Annette M</creator><creator>Brakeman, Paul</creator><creator>Eastburn, Dennis J</creator><creator>Datta, Anirban</creator><creator>Bryant, David M</creator><creator>Fan, Qi-Wen</creator><creator>Weiss, William A</creator><creator>Zegers, Mirjam M P</creator><creator>Mostov, Keith E</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200809</creationdate><title>Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity</title><author>Yu, Wei ; Shewan, Annette M ; Brakeman, Paul ; Eastburn, Dennis J ; Datta, Anirban ; Bryant, David M ; Fan, Qi-Wen ; Weiss, William A ; Zegers, Mirjam M P ; Mostov, Keith E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6385-3a74f65b1527fdf1ad90728742ead47196da137dac88dd43ee6ed61fad2c27913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>Cell Polarity</topic><topic>Cellular biology</topic><topic>Dogs</topic><topic>EMBO11</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>epithelial polarity</topic><topic>Humans</topic><topic>Kidneys</topic><topic>Molecular biology</topic><topic>myosin II</topic><topic>Myosin Type II - genetics</topic><topic>Myosin Type II - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>rho-Associated Kinases - genetics</topic><topic>rho-Associated Kinases - metabolism</topic><topic>RhoA</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering - genetics</topic><topic>ROCK I</topic><topic>Rocks</topic><topic>Scientific Report</topic><topic>Transfection</topic><topic>β1-integrin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Wei</creatorcontrib><creatorcontrib>Shewan, Annette M</creatorcontrib><creatorcontrib>Brakeman, Paul</creatorcontrib><creatorcontrib>Eastburn, Dennis J</creatorcontrib><creatorcontrib>Datta, Anirban</creatorcontrib><creatorcontrib>Bryant, David M</creatorcontrib><creatorcontrib>Fan, Qi-Wen</creatorcontrib><creatorcontrib>Weiss, William A</creatorcontrib><creatorcontrib>Zegers, Mirjam M P</creatorcontrib><creatorcontrib>Mostov, Keith E</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Wei</au><au>Shewan, Annette M</au><au>Brakeman, Paul</au><au>Eastburn, Dennis J</au><au>Datta, Anirban</au><au>Bryant, David M</au><au>Fan, Qi-Wen</au><au>Weiss, William A</au><au>Zegers, Mirjam M P</au><au>Mostov, Keith E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2008-09</date><risdate>2008</risdate><volume>9</volume><issue>9</issue><spage>923</spage><epage>929</epage><pages>923-929</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><eissn>1469-221X</eissn><coden>ERMEAX</coden><abstract>In multicellular epithelial tissues, the orientation of polarity of each cell must be coordinated. Previously, we reported that for Madin–Darby canine kidney cells in three‐dimensional collagen gel culture, blockade of β1‐integrin by the AIIB2 antibody or expression of dominant‐negative Rac1N17 led to an inversion of polarity, such that the apical surfaces of the cells were misorientated towards the extracellular matrix. Here, we show that this process results from the activation of RhoA. Knockdown of RhoA by short hairpin RNA reverses the inverted orientation of polarity, resulting in normal cysts. Inhibition of RhoA downstream effectors, Rho kinase (ROCK I) and myosin II, has similar effects. We conclude that the RhoA–ROCK I–myosin II pathway controls the inversion of orientation of epithelial polarity caused by AIIB2 or Rac1N17. These results might be relevant to the hyperactivation of RhoA and disruption of normal polarity frequently observed in human epithelial cancers.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>18660750</pmid><doi>10.1038/embor.2008.135</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2008-09, Vol.9 (9), p.923-929
issn 1469-221X
1469-3178
1469-221X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2529350
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Blotting, Western
Cell culture
Cell Line
Cell Polarity
Cellular biology
Dogs
EMBO11
Epithelial Cells - cytology
Epithelial Cells - metabolism
epithelial polarity
Humans
Kidneys
Molecular biology
myosin II
Myosin Type II - genetics
Myosin Type II - metabolism
Reverse Transcriptase Polymerase Chain Reaction
rho-Associated Kinases - genetics
rho-Associated Kinases - metabolism
RhoA
rhoA GTP-Binding Protein - genetics
rhoA GTP-Binding Protein - metabolism
Ribonucleic acid
RNA
RNA, Small Interfering - genetics
ROCK I
Rocks
Scientific Report
Transfection
β1-integrin
title Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20RhoA,%20ROCK%20I%20and%20myosin%20II%20in%20inverted%20orientation%20of%20epithelial%20polarity&rft.jtitle=EMBO%20reports&rft.au=Yu,%20Wei&rft.date=2008-09&rft.volume=9&rft.issue=9&rft.spage=923&rft.epage=929&rft.pages=923-929&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.1038/embor.2008.135&rft_dat=%3Cproquest_pubme%3E69495087%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208527906&rft_id=info:pmid/18660750&rfr_iscdi=true