Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe

We have studied telomere length in Schizosaccharomyces pombe strains carrying mutations affecting cell cycle checkpoints, DNA repair, and regulation of the Cdc2 protein kinase. Telomere shortening was found in rad1, rad3, rad17, and rad26 mutants. Telomere lengths in previously characterized rad1 mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 1998-03, Vol.9 (3), p.611-621
Hauptverfasser: Dahlen, M, Olsson, T, Kanter-Smoler, G, Ramne, A, Sunnerhagen, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue 3
container_start_page 611
container_title Molecular biology of the cell
container_volume 9
creator Dahlen, M
Olsson, T
Kanter-Smoler, G
Ramne, A
Sunnerhagen, P
description We have studied telomere length in Schizosaccharomyces pombe strains carrying mutations affecting cell cycle checkpoints, DNA repair, and regulation of the Cdc2 protein kinase. Telomere shortening was found in rad1, rad3, rad17, and rad26 mutants. Telomere lengths in previously characterized rad1 mutants paralleled the replication checkpoint proficiency of those mutants. In contrast, rad9, chk1, hus1, and cds1 mutants had intact telomeres. No difference in telomere length was seen in mutants affected in the regulation of Cdc2, whereas some of the DNA repair mutants examined had slightly longer telomeres than did the wild type. Overexpression of the rad1(+) gene caused telomeres to elongate slightly. The kinetics of telomere shortening was monitored by following telomere length after disruption of the rad1(+) gene; the rate was approximately 1 nucleotide per generation. Wild-type telomere length could be restored by reintroduction of the wild-type rad1(+) gene. Expression of the Saccharomyces cerevisiae RCK1 protein kinase gene, which suppresses the radiation and hydroxyurea sensitivity of Sz. pombe checkpoint mutants, was able to attenuate telomere shortening in rad1 mutant cells and to increase telomere length in a wild-type background. The functional effects of telomere shortening in rad1 mutants were assayed by measuring loss of a linear and a circular minichromosome. A minor increase in loss rate was seen with the linear minichromosome, and an even smaller difference compared with wild-type was detected with the circular plasmid.
doi_str_mv 10.1091/mbc.9.3.611
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_25290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79714282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-adc7bc5f011545f6ebdb145b21b5e5b8fcae667172e1456be2400c08a55b3e673</originalsourceid><addsrcrecordid>eNpVkM1LxDAQxYMo67p68iz05EW6Jm2SNuBFFr9gUfDjHJLstI22TW1aYf3rjeyy6GmGN783MzyETgmeEyzIZaPNXMzTOSdkD02JSEVMWc73Q4-ZiAlL6CE68v4dY0IpzyZoImiekRRP0eMzlGOtBuvayBXRALVroIeohrYcqkivI1OB-eicbYeohBZ8ZNvoxVT223llTKV616xNkDvXaDhGB4WqPZxs6wy93d68Lu7j5dPdw-J6GZuU8yFWK5NpwwpMCKOs4KBXmlCmE6IZMJ0XRgHnGckSCDLXkFCMDc4VYzoFnqUzdLXZ2426gZWBduhVLbveNqpfS6es_D9pbSVL9yUTlggc7Odbe-8-R_CDbKw3UNeqBTd6mYmM0CRPAnixAU3vvO-h2J0gWP6GL0P4UshUhvADffb3qx27TTv9AZ-IgrE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79714282</pqid></control><display><type>article</type><title>Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dahlen, M ; Olsson, T ; Kanter-Smoler, G ; Ramne, A ; Sunnerhagen, P</creator><creatorcontrib>Dahlen, M ; Olsson, T ; Kanter-Smoler, G ; Ramne, A ; Sunnerhagen, P</creatorcontrib><description>We have studied telomere length in Schizosaccharomyces pombe strains carrying mutations affecting cell cycle checkpoints, DNA repair, and regulation of the Cdc2 protein kinase. Telomere shortening was found in rad1, rad3, rad17, and rad26 mutants. Telomere lengths in previously characterized rad1 mutants paralleled the replication checkpoint proficiency of those mutants. In contrast, rad9, chk1, hus1, and cds1 mutants had intact telomeres. No difference in telomere length was seen in mutants affected in the regulation of Cdc2, whereas some of the DNA repair mutants examined had slightly longer telomeres than did the wild type. Overexpression of the rad1(+) gene caused telomeres to elongate slightly. The kinetics of telomere shortening was monitored by following telomere length after disruption of the rad1(+) gene; the rate was approximately 1 nucleotide per generation. Wild-type telomere length could be restored by reintroduction of the wild-type rad1(+) gene. Expression of the Saccharomyces cerevisiae RCK1 protein kinase gene, which suppresses the radiation and hydroxyurea sensitivity of Sz. pombe checkpoint mutants, was able to attenuate telomere shortening in rad1 mutant cells and to increase telomere length in a wild-type background. The functional effects of telomere shortening in rad1 mutants were assayed by measuring loss of a linear and a circular minichromosome. A minor increase in loss rate was seen with the linear minichromosome, and an even smaller difference compared with wild-type was detected with the circular plasmid.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.9.3.611</identifier><identifier>PMID: 9487130</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>CDC2 Protein Kinase - genetics ; Cell Cycle - genetics ; Chromosomes, Fungal - genetics ; Chromosomes, Fungal - ultrastructure ; DNA Repair - genetics ; DNA Repair Enzymes ; DNA Replication - genetics ; DNA, Fungal - biosynthesis ; DNA, Fungal - genetics ; DNA-Binding Proteins ; Endonucleases - genetics ; Endonucleases - metabolism ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Genes, Fungal ; Kinetics ; Mutation ; Potassium Channels - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - ultrastructure ; Saccharomyces cerevisiae Proteins ; Schizosaccharomyces - genetics ; Schizosaccharomyces - metabolism ; Schizosaccharomyces - ultrastructure ; Schizosaccharomyces pombe Proteins ; Telomere - genetics ; Telomere - ultrastructure ; Temperature</subject><ispartof>Molecular biology of the cell, 1998-03, Vol.9 (3), p.611-621</ispartof><rights>Copyright © 1998, The American Society for Cell Biology 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-adc7bc5f011545f6ebdb145b21b5e5b8fcae667172e1456be2400c08a55b3e673</citedby><cites>FETCH-LOGICAL-c366t-adc7bc5f011545f6ebdb145b21b5e5b8fcae667172e1456be2400c08a55b3e673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC25290/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC25290/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9487130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahlen, M</creatorcontrib><creatorcontrib>Olsson, T</creatorcontrib><creatorcontrib>Kanter-Smoler, G</creatorcontrib><creatorcontrib>Ramne, A</creatorcontrib><creatorcontrib>Sunnerhagen, P</creatorcontrib><title>Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>We have studied telomere length in Schizosaccharomyces pombe strains carrying mutations affecting cell cycle checkpoints, DNA repair, and regulation of the Cdc2 protein kinase. Telomere shortening was found in rad1, rad3, rad17, and rad26 mutants. Telomere lengths in previously characterized rad1 mutants paralleled the replication checkpoint proficiency of those mutants. In contrast, rad9, chk1, hus1, and cds1 mutants had intact telomeres. No difference in telomere length was seen in mutants affected in the regulation of Cdc2, whereas some of the DNA repair mutants examined had slightly longer telomeres than did the wild type. Overexpression of the rad1(+) gene caused telomeres to elongate slightly. The kinetics of telomere shortening was monitored by following telomere length after disruption of the rad1(+) gene; the rate was approximately 1 nucleotide per generation. Wild-type telomere length could be restored by reintroduction of the wild-type rad1(+) gene. Expression of the Saccharomyces cerevisiae RCK1 protein kinase gene, which suppresses the radiation and hydroxyurea sensitivity of Sz. pombe checkpoint mutants, was able to attenuate telomere shortening in rad1 mutant cells and to increase telomere length in a wild-type background. The functional effects of telomere shortening in rad1 mutants were assayed by measuring loss of a linear and a circular minichromosome. A minor increase in loss rate was seen with the linear minichromosome, and an even smaller difference compared with wild-type was detected with the circular plasmid.</description><subject>CDC2 Protein Kinase - genetics</subject><subject>Cell Cycle - genetics</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Chromosomes, Fungal - ultrastructure</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair Enzymes</subject><subject>DNA Replication - genetics</subject><subject>DNA, Fungal - biosynthesis</subject><subject>DNA, Fungal - genetics</subject><subject>DNA-Binding Proteins</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Genes, Fungal</subject><subject>Kinetics</subject><subject>Mutation</subject><subject>Potassium Channels - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces - ultrastructure</subject><subject>Schizosaccharomyces pombe Proteins</subject><subject>Telomere - genetics</subject><subject>Telomere - ultrastructure</subject><subject>Temperature</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1LxDAQxYMo67p68iz05EW6Jm2SNuBFFr9gUfDjHJLstI22TW1aYf3rjeyy6GmGN783MzyETgmeEyzIZaPNXMzTOSdkD02JSEVMWc73Q4-ZiAlL6CE68v4dY0IpzyZoImiekRRP0eMzlGOtBuvayBXRALVroIeohrYcqkivI1OB-eicbYeohBZ8ZNvoxVT223llTKV616xNkDvXaDhGB4WqPZxs6wy93d68Lu7j5dPdw-J6GZuU8yFWK5NpwwpMCKOs4KBXmlCmE6IZMJ0XRgHnGckSCDLXkFCMDc4VYzoFnqUzdLXZ2426gZWBduhVLbveNqpfS6es_D9pbSVL9yUTlggc7Odbe-8-R_CDbKw3UNeqBTd6mYmM0CRPAnixAU3vvO-h2J0gWP6GL0P4UshUhvADffb3qx27TTv9AZ-IgrE</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>Dahlen, M</creator><creator>Olsson, T</creator><creator>Kanter-Smoler, G</creator><creator>Ramne, A</creator><creator>Sunnerhagen, P</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980301</creationdate><title>Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe</title><author>Dahlen, M ; Olsson, T ; Kanter-Smoler, G ; Ramne, A ; Sunnerhagen, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-adc7bc5f011545f6ebdb145b21b5e5b8fcae667172e1456be2400c08a55b3e673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>CDC2 Protein Kinase - genetics</topic><topic>Cell Cycle - genetics</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Chromosomes, Fungal - ultrastructure</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair Enzymes</topic><topic>DNA Replication - genetics</topic><topic>DNA, Fungal - biosynthesis</topic><topic>DNA, Fungal - genetics</topic><topic>DNA-Binding Proteins</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Genes, Fungal</topic><topic>Kinetics</topic><topic>Mutation</topic><topic>Potassium Channels - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces - ultrastructure</topic><topic>Schizosaccharomyces pombe Proteins</topic><topic>Telomere - genetics</topic><topic>Telomere - ultrastructure</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahlen, M</creatorcontrib><creatorcontrib>Olsson, T</creatorcontrib><creatorcontrib>Kanter-Smoler, G</creatorcontrib><creatorcontrib>Ramne, A</creatorcontrib><creatorcontrib>Sunnerhagen, P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahlen, M</au><au>Olsson, T</au><au>Kanter-Smoler, G</au><au>Ramne, A</au><au>Sunnerhagen, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>1998-03-01</date><risdate>1998</risdate><volume>9</volume><issue>3</issue><spage>611</spage><epage>621</epage><pages>611-621</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>We have studied telomere length in Schizosaccharomyces pombe strains carrying mutations affecting cell cycle checkpoints, DNA repair, and regulation of the Cdc2 protein kinase. Telomere shortening was found in rad1, rad3, rad17, and rad26 mutants. Telomere lengths in previously characterized rad1 mutants paralleled the replication checkpoint proficiency of those mutants. In contrast, rad9, chk1, hus1, and cds1 mutants had intact telomeres. No difference in telomere length was seen in mutants affected in the regulation of Cdc2, whereas some of the DNA repair mutants examined had slightly longer telomeres than did the wild type. Overexpression of the rad1(+) gene caused telomeres to elongate slightly. The kinetics of telomere shortening was monitored by following telomere length after disruption of the rad1(+) gene; the rate was approximately 1 nucleotide per generation. Wild-type telomere length could be restored by reintroduction of the wild-type rad1(+) gene. Expression of the Saccharomyces cerevisiae RCK1 protein kinase gene, which suppresses the radiation and hydroxyurea sensitivity of Sz. pombe checkpoint mutants, was able to attenuate telomere shortening in rad1 mutant cells and to increase telomere length in a wild-type background. The functional effects of telomere shortening in rad1 mutants were assayed by measuring loss of a linear and a circular minichromosome. A minor increase in loss rate was seen with the linear minichromosome, and an even smaller difference compared with wild-type was detected with the circular plasmid.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>9487130</pmid><doi>10.1091/mbc.9.3.611</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 1998-03, Vol.9 (3), p.611-621
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_25290
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects CDC2 Protein Kinase - genetics
Cell Cycle - genetics
Chromosomes, Fungal - genetics
Chromosomes, Fungal - ultrastructure
DNA Repair - genetics
DNA Repair Enzymes
DNA Replication - genetics
DNA, Fungal - biosynthesis
DNA, Fungal - genetics
DNA-Binding Proteins
Endonucleases - genetics
Endonucleases - metabolism
Fungal Proteins - genetics
Fungal Proteins - metabolism
Genes, Fungal
Kinetics
Mutation
Potassium Channels - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - ultrastructure
Saccharomyces cerevisiae Proteins
Schizosaccharomyces - genetics
Schizosaccharomyces - metabolism
Schizosaccharomyces - ultrastructure
Schizosaccharomyces pombe Proteins
Telomere - genetics
Telomere - ultrastructure
Temperature
title Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20telomere%20length%20by%20checkpoint%20genes%20in%20Schizosaccharomyces%20pombe&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Dahlen,%20M&rft.date=1998-03-01&rft.volume=9&rft.issue=3&rft.spage=611&rft.epage=621&rft.pages=611-621&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.9.3.611&rft_dat=%3Cproquest_pubme%3E79714282%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79714282&rft_id=info:pmid/9487130&rfr_iscdi=true