Mechanoenzymatics of titin kinase
Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (36), p.13385-13390 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13390 |
---|---|
container_issue | 36 |
container_start_page | 13385 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Puchner, Elias M Alexandrovich, Alexander Kho, Ay Lin Hensen, Ulf Schäfer, Lars V Brandmeier, Birgit Gräter, Frauke Grubmüller, Helmut Gaub, Hermann E Gautel, Mathias |
description | Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover. |
doi_str_mv | 10.1073/pnas.0805034105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464053</jstor_id><sourcerecordid>25464053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-a10c60002e4c198d3602a3218e28931d4d1bc55e56c93e690c9d73ae062c131a3</originalsourceid><addsrcrecordid>eNqFkL1vFDEQxS1ElBwhNRXhoIiUYpOxZ-21GyQUkQ8piAJSW47Xm_jYWx-2FxH--nh1pxykoZri_ebNvEfIGwonFBo8XQ0mnYAEDlhT4C_IjIKilagVvCQzANZUsmb1HnmV0gIAFJewS_aobARvlJiR91-cvTdDcMOfh6XJ3qZ56ObZZz_Mf_ji7l6Tnc70yR1s5j65Of_8_eyyuv56cXX26bqyXKpcGQpWlAvM1ZYq2aIAZpBR6ZhUSNu6pbeWc8eFVeiEAqvaBo0DwSxFanCffFz7rsbbpWutG3I0vV5FvzTxQQfj9b_K4O_1XfilGWeNUlgMjjYGMfwcXcp66ZN1fW8GF8akheLIGE7gh2fgIoxxKOE0A4qqkXKCTteQjSGl6LqnTyjoqXs9da-33ZeNw78DbPlN2QU43gDT5taOaxSaIkquu7Hvs_udCzv_D1uQt2tkkXKITwzjtajLO0V_t9Y7E7S5iz7pm29TQKAcS0aFj3NTqYM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201397883</pqid></control><display><type>article</type><title>Mechanoenzymatics of titin kinase</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Puchner, Elias M ; Alexandrovich, Alexander ; Kho, Ay Lin ; Hensen, Ulf ; Schäfer, Lars V ; Brandmeier, Birgit ; Gräter, Frauke ; Grubmüller, Helmut ; Gaub, Hermann E ; Gautel, Mathias</creator><creatorcontrib>Puchner, Elias M ; Alexandrovich, Alexander ; Kho, Ay Lin ; Hensen, Ulf ; Schäfer, Lars V ; Brandmeier, Birgit ; Gräter, Frauke ; Grubmüller, Helmut ; Gaub, Hermann E ; Gautel, Mathias</creatorcontrib><description>Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0805034105</identifier><identifier>PMID: 18765796</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphatase ; Adenosine Triphosphate - metabolism ; Animals ; Binding sites ; Biological Sciences ; Cell Line ; Cells ; Computer Simulation ; Connectin ; Enzyme Activation ; Enzymes ; Kinases ; Kinetics ; Microscopy, Atomic Force ; Models, Molecular ; Molecular dynamics ; Molecules ; Muscle Proteins - chemistry ; Muscle Proteins - metabolism ; Muscle Proteins - ultrastructure ; Phosphorylation ; Protein Folding ; Protein Kinases - chemistry ; Protein Kinases - metabolism ; Protein Kinases - ultrastructure ; Protein Structure, Tertiary ; Proteins ; Sarcomeres ; Sensors ; Spodoptera ; Sprains and strains ; Stress, Mechanical ; Structural strain ; Tissues ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (36), p.13385-13390</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 9, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-a10c60002e4c198d3602a3218e28931d4d1bc55e56c93e690c9d73ae062c131a3</citedby><cites>FETCH-LOGICAL-c589t-a10c60002e4c198d3602a3218e28931d4d1bc55e56c93e690c9d73ae062c131a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464053$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464053$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18765796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puchner, Elias M</creatorcontrib><creatorcontrib>Alexandrovich, Alexander</creatorcontrib><creatorcontrib>Kho, Ay Lin</creatorcontrib><creatorcontrib>Hensen, Ulf</creatorcontrib><creatorcontrib>Schäfer, Lars V</creatorcontrib><creatorcontrib>Brandmeier, Birgit</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><creatorcontrib>Gaub, Hermann E</creatorcontrib><creatorcontrib>Gautel, Mathias</creatorcontrib><title>Mechanoenzymatics of titin kinase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Computer Simulation</subject><subject>Connectin</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecules</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle Proteins - ultrastructure</subject><subject>Phosphorylation</subject><subject>Protein Folding</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Kinases - ultrastructure</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Sarcomeres</subject><subject>Sensors</subject><subject>Spodoptera</subject><subject>Sprains and strains</subject><subject>Stress, Mechanical</subject><subject>Structural strain</subject><subject>Tissues</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1vFDEQxS1ElBwhNRXhoIiUYpOxZ-21GyQUkQ8piAJSW47Xm_jYWx-2FxH--nh1pxykoZri_ebNvEfIGwonFBo8XQ0mnYAEDlhT4C_IjIKilagVvCQzANZUsmb1HnmV0gIAFJewS_aobARvlJiR91-cvTdDcMOfh6XJ3qZ56ObZZz_Mf_ji7l6Tnc70yR1s5j65Of_8_eyyuv56cXX26bqyXKpcGQpWlAvM1ZYq2aIAZpBR6ZhUSNu6pbeWc8eFVeiEAqvaBo0DwSxFanCffFz7rsbbpWutG3I0vV5FvzTxQQfj9b_K4O_1XfilGWeNUlgMjjYGMfwcXcp66ZN1fW8GF8akheLIGE7gh2fgIoxxKOE0A4qqkXKCTteQjSGl6LqnTyjoqXs9da-33ZeNw78DbPlN2QU43gDT5taOaxSaIkquu7Hvs_udCzv_D1uQt2tkkXKITwzjtajLO0V_t9Y7E7S5iz7pm29TQKAcS0aFj3NTqYM</recordid><startdate>20080909</startdate><enddate>20080909</enddate><creator>Puchner, Elias M</creator><creator>Alexandrovich, Alexander</creator><creator>Kho, Ay Lin</creator><creator>Hensen, Ulf</creator><creator>Schäfer, Lars V</creator><creator>Brandmeier, Birgit</creator><creator>Gräter, Frauke</creator><creator>Grubmüller, Helmut</creator><creator>Gaub, Hermann E</creator><creator>Gautel, Mathias</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080909</creationdate><title>Mechanoenzymatics of titin kinase</title><author>Puchner, Elias M ; Alexandrovich, Alexander ; Kho, Ay Lin ; Hensen, Ulf ; Schäfer, Lars V ; Brandmeier, Birgit ; Gräter, Frauke ; Grubmüller, Helmut ; Gaub, Hermann E ; Gautel, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-a10c60002e4c198d3602a3218e28931d4d1bc55e56c93e690c9d73ae062c131a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Computer Simulation</topic><topic>Connectin</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecules</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle Proteins - ultrastructure</topic><topic>Phosphorylation</topic><topic>Protein Folding</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Kinases - ultrastructure</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Sarcomeres</topic><topic>Sensors</topic><topic>Spodoptera</topic><topic>Sprains and strains</topic><topic>Stress, Mechanical</topic><topic>Structural strain</topic><topic>Tissues</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puchner, Elias M</creatorcontrib><creatorcontrib>Alexandrovich, Alexander</creatorcontrib><creatorcontrib>Kho, Ay Lin</creatorcontrib><creatorcontrib>Hensen, Ulf</creatorcontrib><creatorcontrib>Schäfer, Lars V</creatorcontrib><creatorcontrib>Brandmeier, Birgit</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><creatorcontrib>Gaub, Hermann E</creatorcontrib><creatorcontrib>Gautel, Mathias</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puchner, Elias M</au><au>Alexandrovich, Alexander</au><au>Kho, Ay Lin</au><au>Hensen, Ulf</au><au>Schäfer, Lars V</au><au>Brandmeier, Birgit</au><au>Gräter, Frauke</au><au>Grubmüller, Helmut</au><au>Gaub, Hermann E</au><au>Gautel, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanoenzymatics of titin kinase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-09-09</date><risdate>2008</risdate><volume>105</volume><issue>36</issue><spage>13385</spage><epage>13390</epage><pages>13385-13390</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18765796</pmid><doi>10.1073/pnas.0805034105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (36), p.13385-13390 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527993 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine triphosphatase Adenosine Triphosphate - metabolism Animals Binding sites Biological Sciences Cell Line Cells Computer Simulation Connectin Enzyme Activation Enzymes Kinases Kinetics Microscopy, Atomic Force Models, Molecular Molecular dynamics Molecules Muscle Proteins - chemistry Muscle Proteins - metabolism Muscle Proteins - ultrastructure Phosphorylation Protein Folding Protein Kinases - chemistry Protein Kinases - metabolism Protein Kinases - ultrastructure Protein Structure, Tertiary Proteins Sarcomeres Sensors Spodoptera Sprains and strains Stress, Mechanical Structural strain Tissues Vertebrates |
title | Mechanoenzymatics of titin kinase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanoenzymatics%20of%20titin%20kinase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Puchner,%20Elias%20M&rft.date=2008-09-09&rft.volume=105&rft.issue=36&rft.spage=13385&rft.epage=13390&rft.pages=13385-13390&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0805034105&rft_dat=%3Cjstor_pubme%3E25464053%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201397883&rft_id=info:pmid/18765796&rft_jstor_id=25464053&rfr_iscdi=true |