Mechanoenzymatics of titin kinase

Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (36), p.13385-13390
Hauptverfasser: Puchner, Elias M, Alexandrovich, Alexander, Kho, Ay Lin, Hensen, Ulf, Schäfer, Lars V, Brandmeier, Birgit, Gräter, Frauke, Grubmüller, Helmut, Gaub, Hermann E, Gautel, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13390
container_issue 36
container_start_page 13385
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Puchner, Elias M
Alexandrovich, Alexander
Kho, Ay Lin
Hensen, Ulf
Schäfer, Lars V
Brandmeier, Birgit
Gräter, Frauke
Grubmüller, Helmut
Gaub, Hermann E
Gautel, Mathias
description Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover.
doi_str_mv 10.1073/pnas.0805034105
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464053</jstor_id><sourcerecordid>25464053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-a10c60002e4c198d3602a3218e28931d4d1bc55e56c93e690c9d73ae062c131a3</originalsourceid><addsrcrecordid>eNqFkL1vFDEQxS1ElBwhNRXhoIiUYpOxZ-21GyQUkQ8piAJSW47Xm_jYWx-2FxH--nh1pxykoZri_ebNvEfIGwonFBo8XQ0mnYAEDlhT4C_IjIKilagVvCQzANZUsmb1HnmV0gIAFJewS_aobARvlJiR91-cvTdDcMOfh6XJ3qZ56ObZZz_Mf_ji7l6Tnc70yR1s5j65Of_8_eyyuv56cXX26bqyXKpcGQpWlAvM1ZYq2aIAZpBR6ZhUSNu6pbeWc8eFVeiEAqvaBo0DwSxFanCffFz7rsbbpWutG3I0vV5FvzTxQQfj9b_K4O_1XfilGWeNUlgMjjYGMfwcXcp66ZN1fW8GF8akheLIGE7gh2fgIoxxKOE0A4qqkXKCTteQjSGl6LqnTyjoqXs9da-33ZeNw78DbPlN2QU43gDT5taOaxSaIkquu7Hvs_udCzv_D1uQt2tkkXKITwzjtajLO0V_t9Y7E7S5iz7pm29TQKAcS0aFj3NTqYM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201397883</pqid></control><display><type>article</type><title>Mechanoenzymatics of titin kinase</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Puchner, Elias M ; Alexandrovich, Alexander ; Kho, Ay Lin ; Hensen, Ulf ; Schäfer, Lars V ; Brandmeier, Birgit ; Gräter, Frauke ; Grubmüller, Helmut ; Gaub, Hermann E ; Gautel, Mathias</creator><creatorcontrib>Puchner, Elias M ; Alexandrovich, Alexander ; Kho, Ay Lin ; Hensen, Ulf ; Schäfer, Lars V ; Brandmeier, Birgit ; Gräter, Frauke ; Grubmüller, Helmut ; Gaub, Hermann E ; Gautel, Mathias</creatorcontrib><description>Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0805034105</identifier><identifier>PMID: 18765796</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphatase ; Adenosine Triphosphate - metabolism ; Animals ; Binding sites ; Biological Sciences ; Cell Line ; Cells ; Computer Simulation ; Connectin ; Enzyme Activation ; Enzymes ; Kinases ; Kinetics ; Microscopy, Atomic Force ; Models, Molecular ; Molecular dynamics ; Molecules ; Muscle Proteins - chemistry ; Muscle Proteins - metabolism ; Muscle Proteins - ultrastructure ; Phosphorylation ; Protein Folding ; Protein Kinases - chemistry ; Protein Kinases - metabolism ; Protein Kinases - ultrastructure ; Protein Structure, Tertiary ; Proteins ; Sarcomeres ; Sensors ; Spodoptera ; Sprains and strains ; Stress, Mechanical ; Structural strain ; Tissues ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (36), p.13385-13390</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 9, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-a10c60002e4c198d3602a3218e28931d4d1bc55e56c93e690c9d73ae062c131a3</citedby><cites>FETCH-LOGICAL-c589t-a10c60002e4c198d3602a3218e28931d4d1bc55e56c93e690c9d73ae062c131a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464053$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464053$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18765796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Puchner, Elias M</creatorcontrib><creatorcontrib>Alexandrovich, Alexander</creatorcontrib><creatorcontrib>Kho, Ay Lin</creatorcontrib><creatorcontrib>Hensen, Ulf</creatorcontrib><creatorcontrib>Schäfer, Lars V</creatorcontrib><creatorcontrib>Brandmeier, Birgit</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><creatorcontrib>Gaub, Hermann E</creatorcontrib><creatorcontrib>Gautel, Mathias</creatorcontrib><title>Mechanoenzymatics of titin kinase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cell Line</subject><subject>Cells</subject><subject>Computer Simulation</subject><subject>Connectin</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecules</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle Proteins - ultrastructure</subject><subject>Phosphorylation</subject><subject>Protein Folding</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Kinases - ultrastructure</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Sarcomeres</subject><subject>Sensors</subject><subject>Spodoptera</subject><subject>Sprains and strains</subject><subject>Stress, Mechanical</subject><subject>Structural strain</subject><subject>Tissues</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1vFDEQxS1ElBwhNRXhoIiUYpOxZ-21GyQUkQ8piAJSW47Xm_jYWx-2FxH--nh1pxykoZri_ebNvEfIGwonFBo8XQ0mnYAEDlhT4C_IjIKilagVvCQzANZUsmb1HnmV0gIAFJewS_aobARvlJiR91-cvTdDcMOfh6XJ3qZ56ObZZz_Mf_ji7l6Tnc70yR1s5j65Of_8_eyyuv56cXX26bqyXKpcGQpWlAvM1ZYq2aIAZpBR6ZhUSNu6pbeWc8eFVeiEAqvaBo0DwSxFanCffFz7rsbbpWutG3I0vV5FvzTxQQfj9b_K4O_1XfilGWeNUlgMjjYGMfwcXcp66ZN1fW8GF8akheLIGE7gh2fgIoxxKOE0A4qqkXKCTteQjSGl6LqnTyjoqXs9da-33ZeNw78DbPlN2QU43gDT5taOaxSaIkquu7Hvs_udCzv_D1uQt2tkkXKITwzjtajLO0V_t9Y7E7S5iz7pm29TQKAcS0aFj3NTqYM</recordid><startdate>20080909</startdate><enddate>20080909</enddate><creator>Puchner, Elias M</creator><creator>Alexandrovich, Alexander</creator><creator>Kho, Ay Lin</creator><creator>Hensen, Ulf</creator><creator>Schäfer, Lars V</creator><creator>Brandmeier, Birgit</creator><creator>Gräter, Frauke</creator><creator>Grubmüller, Helmut</creator><creator>Gaub, Hermann E</creator><creator>Gautel, Mathias</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080909</creationdate><title>Mechanoenzymatics of titin kinase</title><author>Puchner, Elias M ; Alexandrovich, Alexander ; Kho, Ay Lin ; Hensen, Ulf ; Schäfer, Lars V ; Brandmeier, Birgit ; Gräter, Frauke ; Grubmüller, Helmut ; Gaub, Hermann E ; Gautel, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-a10c60002e4c198d3602a3218e28931d4d1bc55e56c93e690c9d73ae062c131a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cell Line</topic><topic>Cells</topic><topic>Computer Simulation</topic><topic>Connectin</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecules</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle Proteins - ultrastructure</topic><topic>Phosphorylation</topic><topic>Protein Folding</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Kinases - ultrastructure</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Sarcomeres</topic><topic>Sensors</topic><topic>Spodoptera</topic><topic>Sprains and strains</topic><topic>Stress, Mechanical</topic><topic>Structural strain</topic><topic>Tissues</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puchner, Elias M</creatorcontrib><creatorcontrib>Alexandrovich, Alexander</creatorcontrib><creatorcontrib>Kho, Ay Lin</creatorcontrib><creatorcontrib>Hensen, Ulf</creatorcontrib><creatorcontrib>Schäfer, Lars V</creatorcontrib><creatorcontrib>Brandmeier, Birgit</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><creatorcontrib>Gaub, Hermann E</creatorcontrib><creatorcontrib>Gautel, Mathias</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puchner, Elias M</au><au>Alexandrovich, Alexander</au><au>Kho, Ay Lin</au><au>Hensen, Ulf</au><au>Schäfer, Lars V</au><au>Brandmeier, Birgit</au><au>Gräter, Frauke</au><au>Grubmüller, Helmut</au><au>Gaub, Hermann E</au><au>Gautel, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanoenzymatics of titin kinase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-09-09</date><risdate>2008</risdate><volume>105</volume><issue>36</issue><spage>13385</spage><epage>13390</epage><pages>13385-13390</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Biological responses to mechanical stress require strain-sensing molecules, whose mechanically induced conformational changes are relayed to signaling cascades mediating changes in cell and tissue properties. In vertebrate muscle, the giant elastic protein titin is involved in strain sensing via its C-terminal kinase domain (TK) at the sarcomeric M-band and contributes to the adaptation of muscle in response to changes in mechanical strain. TK is regulated in a unique dual autoinhibition mechanism by a C-terminal regulatory tail, blocking the ATP binding site, and tyrosine autoinhibition of the catalytic base. For access to the ATP binding site and phosphorylation of the autoinhibitory tyrosine, the C-terminal autoinhibitory tail needs to be removed. Here, we use AFM-based single-molecule force spectroscopy, molecular dynamics simulations, and enzymatics to study the conformational changes during strain-induced activation of human TK. We show that mechanical strain activates ATP binding before unfolding of the structural titin domains, and that TK can thus act as a biological force sensor. Furthermore, we identify the steps in which the autoinhibition of TK is mechanically relieved at low forces, leading to binding of the cosubstrate ATP and priming the enzyme for subsequent autophosphorylation and substrate turnover.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18765796</pmid><doi>10.1073/pnas.0805034105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (36), p.13385-13390
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527993
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine triphosphatase
Adenosine Triphosphate - metabolism
Animals
Binding sites
Biological Sciences
Cell Line
Cells
Computer Simulation
Connectin
Enzyme Activation
Enzymes
Kinases
Kinetics
Microscopy, Atomic Force
Models, Molecular
Molecular dynamics
Molecules
Muscle Proteins - chemistry
Muscle Proteins - metabolism
Muscle Proteins - ultrastructure
Phosphorylation
Protein Folding
Protein Kinases - chemistry
Protein Kinases - metabolism
Protein Kinases - ultrastructure
Protein Structure, Tertiary
Proteins
Sarcomeres
Sensors
Spodoptera
Sprains and strains
Stress, Mechanical
Structural strain
Tissues
Vertebrates
title Mechanoenzymatics of titin kinase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanoenzymatics%20of%20titin%20kinase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Puchner,%20Elias%20M&rft.date=2008-09-09&rft.volume=105&rft.issue=36&rft.spage=13385&rft.epage=13390&rft.pages=13385-13390&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0805034105&rft_dat=%3Cjstor_pubme%3E25464053%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201397883&rft_id=info:pmid/18765796&rft_jstor_id=25464053&rfr_iscdi=true