High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation
The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatas...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2008-07, Vol.321 (5886), p.250-253 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 5886 |
container_start_page | 250 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 321 |
creator | Kadaba, Neena S Kaiser, Jens T Johnson, Eric Lee, Allen Rees, Douglas C |
description | The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell. |
doi_str_mv | 10.1126/science.1157987 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20054481</jstor_id><sourcerecordid>20054481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-88d2bcf380eeea8505e6a17bf7452459848e7a89a03ed6ed737bedb2a78a83533</originalsourceid><addsrcrecordid>eNqFks1rFDEchgdR7Fo9e1IHQW_T5mPy5UFYl2qFimC755DJ_GY3y2yyJhmh_70pO9TqxVNI3icvSZ5U1UuMzjAm_DxZB95CmTChpHhULTBSrFEE0cfVAiHKG4kEO6mepbRDqGSKPq1OsOQEcy4X1frSbbbNchicd_m2vjirbRhd_Q3y1gXvPNTLT6v6JhqfDiFmiB_q6xwnm6cItfF9vRzHkMq6s_UP2EyjyWXf8-rJYMYEL-bxtFp_vrhZXTZX3798XS2vGssYy42UPensQCUCACMZYsANFt0gWkZapmQrQRipDKLQc-gFFR30HTFCGkkZpafVx2PvYer20FvwOZpRH6Lbm3irg3H678S7rd6EX5owIpQgpeD9XBDDzwlS1nuXLIyj8RCmpLmiWGKi_gsSpJDkghfw7T_gLkzRl1fQBFOmuJKyQOdHyMaQUoTh_sgY6TuxeharZ7Flx-uHN_3DzyYL8G4GTLJmHIox69I9RxDDlKC7oldHbpdyiA9yxNpW4pK_OeaDCdpsYulYXxOEafk8uC1W6G_CSL__</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213596988</pqid></control><display><type>article</type><title>High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Kadaba, Neena S ; Kaiser, Jens T ; Johnson, Eric ; Lee, Allen ; Rees, Douglas C</creator><creatorcontrib>Kadaba, Neena S ; Kaiser, Jens T ; Johnson, Eric ; Lee, Allen ; Rees, Douglas C</creatorcontrib><description>The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1157987</identifier><identifier>PMID: 18621668</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Adenosine triphosphatase ; Adenosine triphosphatases ; Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Architecture ; ATP binding cassette transporters ; ATP-Binding Cassette Transporters - chemistry ; ATP-Binding Cassette Transporters - metabolism ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Cellular biology ; Crystal structure ; Crystallography, X-Ray ; Cytoplasm ; Dimerization ; Dimers ; E coli ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Hydrolysis ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - metabolism ; Methionine - metabolism ; Models, Molecular ; Molecular biophysics ; Molecular Sequence Data ; Molybdates ; Porters ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Structure in molecular biology ; Tridimensional structure</subject><ispartof>Science (American Association for the Advancement of Science), 2008-07, Vol.321 (5886), p.250-253</ispartof><rights>Copyright 2008 American Association for the Advancement of Science</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-88d2bcf380eeea8505e6a17bf7452459848e7a89a03ed6ed737bedb2a78a83533</citedby><cites>FETCH-LOGICAL-c555t-88d2bcf380eeea8505e6a17bf7452459848e7a89a03ed6ed737bedb2a78a83533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20054481$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20054481$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20513207$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18621668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadaba, Neena S</creatorcontrib><creatorcontrib>Kaiser, Jens T</creatorcontrib><creatorcontrib>Johnson, Eric</creatorcontrib><creatorcontrib>Lee, Allen</creatorcontrib><creatorcontrib>Rees, Douglas C</creatorcontrib><title>High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Architecture</subject><subject>ATP binding cassette transporters</subject><subject>ATP-Binding Cassette Transporters - chemistry</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cellular biology</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Cytoplasm</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrolysis</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Methionine - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Molecular Sequence Data</subject><subject>Molybdates</subject><subject>Porters</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Structure in molecular biology</subject><subject>Tridimensional structure</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1rFDEchgdR7Fo9e1IHQW_T5mPy5UFYl2qFimC755DJ_GY3y2yyJhmh_70pO9TqxVNI3icvSZ5U1UuMzjAm_DxZB95CmTChpHhULTBSrFEE0cfVAiHKG4kEO6mepbRDqGSKPq1OsOQEcy4X1frSbbbNchicd_m2vjirbRhd_Q3y1gXvPNTLT6v6JhqfDiFmiB_q6xwnm6cItfF9vRzHkMq6s_UP2EyjyWXf8-rJYMYEL-bxtFp_vrhZXTZX3798XS2vGssYy42UPensQCUCACMZYsANFt0gWkZapmQrQRipDKLQc-gFFR30HTFCGkkZpafVx2PvYer20FvwOZpRH6Lbm3irg3H678S7rd6EX5owIpQgpeD9XBDDzwlS1nuXLIyj8RCmpLmiWGKi_gsSpJDkghfw7T_gLkzRl1fQBFOmuJKyQOdHyMaQUoTh_sgY6TuxeharZ7Flx-uHN_3DzyYL8G4GTLJmHIox69I9RxDDlKC7oldHbpdyiA9yxNpW4pK_OeaDCdpsYulYXxOEafk8uC1W6G_CSL__</recordid><startdate>20080711</startdate><enddate>20080711</enddate><creator>Kadaba, Neena S</creator><creator>Kaiser, Jens T</creator><creator>Johnson, Eric</creator><creator>Lee, Allen</creator><creator>Rees, Douglas C</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080711</creationdate><title>High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation</title><author>Kadaba, Neena S ; Kaiser, Jens T ; Johnson, Eric ; Lee, Allen ; Rees, Douglas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-88d2bcf380eeea8505e6a17bf7452459848e7a89a03ed6ed737bedb2a78a83533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Architecture</topic><topic>ATP binding cassette transporters</topic><topic>ATP-Binding Cassette Transporters - chemistry</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cellular biology</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Cytoplasm</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrolysis</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Methionine - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Molecular Sequence Data</topic><topic>Molybdates</topic><topic>Porters</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Structure in molecular biology</topic><topic>Tridimensional structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadaba, Neena S</creatorcontrib><creatorcontrib>Kaiser, Jens T</creatorcontrib><creatorcontrib>Johnson, Eric</creatorcontrib><creatorcontrib>Lee, Allen</creatorcontrib><creatorcontrib>Rees, Douglas C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadaba, Neena S</au><au>Kaiser, Jens T</au><au>Johnson, Eric</au><au>Lee, Allen</au><au>Rees, Douglas C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2008-07-11</date><risdate>2008</risdate><volume>321</volume><issue>5886</issue><spage>250</spage><epage>253</epage><pages>250-253</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>18621668</pmid><doi>10.1126/science.1157987</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2008-07, Vol.321 (5886), p.250-253 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527972 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Adenosine triphosphatase Adenosine triphosphatases Adenosine Triphosphatases - chemistry Adenosine Triphosphatases - metabolism Allosteric Regulation Amino Acid Sequence Architecture ATP binding cassette transporters ATP-Binding Cassette Transporters - chemistry ATP-Binding Cassette Transporters - metabolism Binding Sites Biochemistry Biological and medical sciences Cellular biology Crystal structure Crystallography, X-Ray Cytoplasm Dimerization Dimers E coli Escherichia coli Escherichia coli Proteins - chemistry Escherichia coli Proteins - metabolism Fundamental and applied biological sciences. Psychology Hydrolysis Membrane Transport Proteins - chemistry Membrane Transport Proteins - metabolism Methionine - metabolism Models, Molecular Molecular biophysics Molecular Sequence Data Molybdates Porters Protein Conformation Protein Folding Protein Structure, Secondary Protein Structure, Tertiary Protein Subunits - chemistry Protein Subunits - metabolism Structure in molecular biology Tridimensional structure |
title | High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Affinity%20E.%20coli%20Methionine%20ABC%20Transporter:%20Structure%20and%20Allosteric%20Regulation&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kadaba,%20Neena%20S&rft.date=2008-07-11&rft.volume=321&rft.issue=5886&rft.spage=250&rft.epage=253&rft.pages=250-253&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1157987&rft_dat=%3Cjstor_pubme%3E20054481%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213596988&rft_id=info:pmid/18621668&rft_jstor_id=20054481&rfr_iscdi=true |