High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation

The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2008-07, Vol.321 (5886), p.250-253
Hauptverfasser: Kadaba, Neena S, Kaiser, Jens T, Johnson, Eric, Lee, Allen, Rees, Douglas C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 5886
container_start_page 250
container_title Science (American Association for the Advancement of Science)
container_volume 321
creator Kadaba, Neena S
Kaiser, Jens T
Johnson, Eric
Lee, Allen
Rees, Douglas C
description The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.
doi_str_mv 10.1126/science.1157987
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20054481</jstor_id><sourcerecordid>20054481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-88d2bcf380eeea8505e6a17bf7452459848e7a89a03ed6ed737bedb2a78a83533</originalsourceid><addsrcrecordid>eNqFks1rFDEchgdR7Fo9e1IHQW_T5mPy5UFYl2qFimC755DJ_GY3y2yyJhmh_70pO9TqxVNI3icvSZ5U1UuMzjAm_DxZB95CmTChpHhULTBSrFEE0cfVAiHKG4kEO6mepbRDqGSKPq1OsOQEcy4X1frSbbbNchicd_m2vjirbRhd_Q3y1gXvPNTLT6v6JhqfDiFmiB_q6xwnm6cItfF9vRzHkMq6s_UP2EyjyWXf8-rJYMYEL-bxtFp_vrhZXTZX3798XS2vGssYy42UPensQCUCACMZYsANFt0gWkZapmQrQRipDKLQc-gFFR30HTFCGkkZpafVx2PvYer20FvwOZpRH6Lbm3irg3H678S7rd6EX5owIpQgpeD9XBDDzwlS1nuXLIyj8RCmpLmiWGKi_gsSpJDkghfw7T_gLkzRl1fQBFOmuJKyQOdHyMaQUoTh_sgY6TuxeharZ7Flx-uHN_3DzyYL8G4GTLJmHIox69I9RxDDlKC7oldHbpdyiA9yxNpW4pK_OeaDCdpsYulYXxOEafk8uC1W6G_CSL__</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213596988</pqid></control><display><type>article</type><title>High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Kadaba, Neena S ; Kaiser, Jens T ; Johnson, Eric ; Lee, Allen ; Rees, Douglas C</creator><creatorcontrib>Kadaba, Neena S ; Kaiser, Jens T ; Johnson, Eric ; Lee, Allen ; Rees, Douglas C</creatorcontrib><description>The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1157987</identifier><identifier>PMID: 18621668</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Adenosine triphosphatase ; Adenosine triphosphatases ; Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Architecture ; ATP binding cassette transporters ; ATP-Binding Cassette Transporters - chemistry ; ATP-Binding Cassette Transporters - metabolism ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Cellular biology ; Crystal structure ; Crystallography, X-Ray ; Cytoplasm ; Dimerization ; Dimers ; E coli ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Hydrolysis ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - metabolism ; Methionine - metabolism ; Models, Molecular ; Molecular biophysics ; Molecular Sequence Data ; Molybdates ; Porters ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Structure in molecular biology ; Tridimensional structure</subject><ispartof>Science (American Association for the Advancement of Science), 2008-07, Vol.321 (5886), p.250-253</ispartof><rights>Copyright 2008 American Association for the Advancement of Science</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-88d2bcf380eeea8505e6a17bf7452459848e7a89a03ed6ed737bedb2a78a83533</citedby><cites>FETCH-LOGICAL-c555t-88d2bcf380eeea8505e6a17bf7452459848e7a89a03ed6ed737bedb2a78a83533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20054481$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20054481$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20513207$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18621668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadaba, Neena S</creatorcontrib><creatorcontrib>Kaiser, Jens T</creatorcontrib><creatorcontrib>Johnson, Eric</creatorcontrib><creatorcontrib>Lee, Allen</creatorcontrib><creatorcontrib>Rees, Douglas C</creatorcontrib><title>High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Architecture</subject><subject>ATP binding cassette transporters</subject><subject>ATP-Binding Cassette Transporters - chemistry</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cellular biology</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Cytoplasm</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrolysis</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Methionine - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Molecular Sequence Data</subject><subject>Molybdates</subject><subject>Porters</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Structure in molecular biology</subject><subject>Tridimensional structure</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1rFDEchgdR7Fo9e1IHQW_T5mPy5UFYl2qFimC755DJ_GY3y2yyJhmh_70pO9TqxVNI3icvSZ5U1UuMzjAm_DxZB95CmTChpHhULTBSrFEE0cfVAiHKG4kEO6mepbRDqGSKPq1OsOQEcy4X1frSbbbNchicd_m2vjirbRhd_Q3y1gXvPNTLT6v6JhqfDiFmiB_q6xwnm6cItfF9vRzHkMq6s_UP2EyjyWXf8-rJYMYEL-bxtFp_vrhZXTZX3798XS2vGssYy42UPensQCUCACMZYsANFt0gWkZapmQrQRipDKLQc-gFFR30HTFCGkkZpafVx2PvYer20FvwOZpRH6Lbm3irg3H678S7rd6EX5owIpQgpeD9XBDDzwlS1nuXLIyj8RCmpLmiWGKi_gsSpJDkghfw7T_gLkzRl1fQBFOmuJKyQOdHyMaQUoTh_sgY6TuxeharZ7Flx-uHN_3DzyYL8G4GTLJmHIox69I9RxDDlKC7oldHbpdyiA9yxNpW4pK_OeaDCdpsYulYXxOEafk8uC1W6G_CSL__</recordid><startdate>20080711</startdate><enddate>20080711</enddate><creator>Kadaba, Neena S</creator><creator>Kaiser, Jens T</creator><creator>Johnson, Eric</creator><creator>Lee, Allen</creator><creator>Rees, Douglas C</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080711</creationdate><title>High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation</title><author>Kadaba, Neena S ; Kaiser, Jens T ; Johnson, Eric ; Lee, Allen ; Rees, Douglas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-88d2bcf380eeea8505e6a17bf7452459848e7a89a03ed6ed737bedb2a78a83533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Architecture</topic><topic>ATP binding cassette transporters</topic><topic>ATP-Binding Cassette Transporters - chemistry</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cellular biology</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Cytoplasm</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrolysis</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Methionine - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Molecular Sequence Data</topic><topic>Molybdates</topic><topic>Porters</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Structure in molecular biology</topic><topic>Tridimensional structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadaba, Neena S</creatorcontrib><creatorcontrib>Kaiser, Jens T</creatorcontrib><creatorcontrib>Johnson, Eric</creatorcontrib><creatorcontrib>Lee, Allen</creatorcontrib><creatorcontrib>Rees, Douglas C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadaba, Neena S</au><au>Kaiser, Jens T</au><au>Johnson, Eric</au><au>Lee, Allen</au><au>Rees, Douglas C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2008-07-11</date><risdate>2008</risdate><volume>321</volume><issue>5886</issue><spage>250</spage><epage>253</epage><pages>250-253</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The crystal structure of the high-affinity Escherichia coli MetNI methionine uptake transporter, a member of the adenosine triphosphate (ATP)-binding cassette (ABC) family, has been solved to 3.7 angstrom resolution. The overall architecture of MetNI reveals two copies of the adenosine triphosphatase (ATPase) MetN in complex with two copies of the transmembrane domain MetI, with the transporter adopting an inward-facing conformation exhibiting widely separated nucleotide binding domains. Each MetI subunit is organized around a core of five transmembrane helices that correspond to a subset of the helices observed in the larger membrane-spanning subunits of the molybdate (ModBC) and maltose (MalFGK) ABC transporters. In addition to the conserved nucleotide binding domain of the ABC family, MetN contains a carboxyl-terminal extension with a ferredoxin-like fold previously assigned to a conserved family of regulatory ligand-binding domains. These domains separate the nucleotide binding domains and would interfere with their association required for ATP binding and hydrolysis. Methionine binds to the dimerized carboxyl-terminal domain and is shown to inhibit ATPase activity. These observations are consistent with an allosteric regulatory mechanism operating at the level of transport activity, where increased intracellular levels of the transported ligand stabilize an inward-facing, ATPase-inactive state of MetNI to inhibit further ligand translocation into the cell.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>18621668</pmid><doi>10.1126/science.1157987</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2008-07, Vol.321 (5886), p.250-253
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527972
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Adenosine triphosphatase
Adenosine triphosphatases
Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - metabolism
Allosteric Regulation
Amino Acid Sequence
Architecture
ATP binding cassette transporters
ATP-Binding Cassette Transporters - chemistry
ATP-Binding Cassette Transporters - metabolism
Binding Sites
Biochemistry
Biological and medical sciences
Cellular biology
Crystal structure
Crystallography, X-Ray
Cytoplasm
Dimerization
Dimers
E coli
Escherichia coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Hydrolysis
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - metabolism
Methionine - metabolism
Models, Molecular
Molecular biophysics
Molecular Sequence Data
Molybdates
Porters
Protein Conformation
Protein Folding
Protein Structure, Secondary
Protein Structure, Tertiary
Protein Subunits - chemistry
Protein Subunits - metabolism
Structure in molecular biology
Tridimensional structure
title High-Affinity E. coli Methionine ABC Transporter: Structure and Allosteric Regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Affinity%20E.%20coli%20Methionine%20ABC%20Transporter:%20Structure%20and%20Allosteric%20Regulation&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kadaba,%20Neena%20S&rft.date=2008-07-11&rft.volume=321&rft.issue=5886&rft.spage=250&rft.epage=253&rft.pages=250-253&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1157987&rft_dat=%3Cjstor_pubme%3E20054481%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213596988&rft_id=info:pmid/18621668&rft_jstor_id=20054481&rfr_iscdi=true