Multicellular Sprouting In Vitro
Cell motility and its guidance through cell-cell contacts is instrumental in vasculogenesis and in other developmental or pathological processes as well. During vasculogenesis, multicellular sprouts invade rapidly into avascular areas, eventually creating a polygonal pattern. Sprout elongation, in t...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2008-09, Vol.95 (6), p.2702-2710 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2710 |
---|---|
container_issue | 6 |
container_start_page | 2702 |
container_title | Biophysical journal |
container_volume | 95 |
creator | Szabo, Andras Mehes, Elod Kosa, Edina Czirok, Andras |
description | Cell motility and its guidance through cell-cell contacts is instrumental in vasculogenesis and in other developmental or pathological processes as well. During vasculogenesis, multicellular sprouts invade rapidly into avascular areas, eventually creating a polygonal pattern. Sprout elongation, in turn, depends on a continuous supply of endothelial cells, streaming along the sprout toward its tip. As long-term videomicroscopy of in vitro cell cultures reveal, cell lines such as C6 gliomas or 3T3 fibroblasts form multicellular linear arrangements in vitro, similar to the multicellular vasculogenic sprouts. We show evidence that close contact with elongated cells enhances and guides cell motility. To model the patterning process we augmented the widely used cellular Potts model with an inherently nonequilibrium interaction whereby surfaces of elongated cells become more preferred adhesion substrates than surfaces of well-spread, isotropic cells. |
doi_str_mv | 10.1529/biophysj.108.129668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349508784157</els_id><sourcerecordid>864424107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-27c830bafdb014dfd5962955adcab4d710fc7f18950feb43c34385a0b1ddf1c93</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhq0K1KTQX1CpijjQ06YzXtvrPRQJRdAiBfUA9Gp5bW_iaLNO7d1I_Hs2SmiBA6eRZp555-Ml5AvCFDktv1c-bJaPaTVFkFOkpRDyAxkjZzQDkOKIjAFAZDkr-Yh8SmkFgJQDfiQjlFwUIqdjMrntm84b1zR9o-PkbhND3_l2MblpJ398F8MpOa51k9znQzwhD9dX97Nf2fz3z5vZ5TwzHEWX0cLIHCpd2wqQ2dryUtCSc22NrpgtEGpT1ChLDrWrWG5ylkuuoUJrazRlfkIu9rqbvlo7a1zbRd2oTfRrHR9V0F69rrR-qRZhqyinBZUwCHw7CMTwt3epU2ufdofp1oU-KSkYowyhGMjzd0lRMikBcQDP3oCr0Md2eIOiyIUsCtwtnu8hE0NK0dX_dkZQO6PUs1FDQqq9UUPX15fn_u85ODMAP_aAG56-9S6qZLxrjbM-OtMpG_y7A54A3jel7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215687719</pqid></control><display><type>article</type><title>Multicellular Sprouting In Vitro</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Szabo, Andras ; Mehes, Elod ; Kosa, Edina ; Czirok, Andras</creator><creatorcontrib>Szabo, Andras ; Mehes, Elod ; Kosa, Edina ; Czirok, Andras</creatorcontrib><description>Cell motility and its guidance through cell-cell contacts is instrumental in vasculogenesis and in other developmental or pathological processes as well. During vasculogenesis, multicellular sprouts invade rapidly into avascular areas, eventually creating a polygonal pattern. Sprout elongation, in turn, depends on a continuous supply of endothelial cells, streaming along the sprout toward its tip. As long-term videomicroscopy of in vitro cell cultures reveal, cell lines such as C6 gliomas or 3T3 fibroblasts form multicellular linear arrangements in vitro, similar to the multicellular vasculogenic sprouts. We show evidence that close contact with elongated cells enhances and guides cell motility. To model the patterning process we augmented the widely used cellular Potts model with an inherently nonequilibrium interaction whereby surfaces of elongated cells become more preferred adhesion substrates than surfaces of well-spread, isotropic cells.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.108.129668</identifier><identifier>PMID: 18567632</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adhesion ; Animals ; Biophysical Theory and Modeling ; Cell adhesion & migration ; Cell culture ; Cell growth ; Cell Line ; Cell Movement ; Cell Shape ; Cellular ; Culture ; Elongation ; Endothelial cells ; Fibroblasts ; In vitro testing ; Mice ; Microscopy ; Models, Biological ; Patterning ; Surface Tension</subject><ispartof>Biophysical journal, 2008-09, Vol.95 (6), p.2702-2710</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright Biophysical Society Sep 15, 2008</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-27c830bafdb014dfd5962955adcab4d710fc7f18950feb43c34385a0b1ddf1c93</citedby><cites>FETCH-LOGICAL-c516t-27c830bafdb014dfd5962955adcab4d710fc7f18950feb43c34385a0b1ddf1c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527280/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.108.129668$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,3552,27931,27932,46002,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18567632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szabo, Andras</creatorcontrib><creatorcontrib>Mehes, Elod</creatorcontrib><creatorcontrib>Kosa, Edina</creatorcontrib><creatorcontrib>Czirok, Andras</creatorcontrib><title>Multicellular Sprouting In Vitro</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Cell motility and its guidance through cell-cell contacts is instrumental in vasculogenesis and in other developmental or pathological processes as well. During vasculogenesis, multicellular sprouts invade rapidly into avascular areas, eventually creating a polygonal pattern. Sprout elongation, in turn, depends on a continuous supply of endothelial cells, streaming along the sprout toward its tip. As long-term videomicroscopy of in vitro cell cultures reveal, cell lines such as C6 gliomas or 3T3 fibroblasts form multicellular linear arrangements in vitro, similar to the multicellular vasculogenic sprouts. We show evidence that close contact with elongated cells enhances and guides cell motility. To model the patterning process we augmented the widely used cellular Potts model with an inherently nonequilibrium interaction whereby surfaces of elongated cells become more preferred adhesion substrates than surfaces of well-spread, isotropic cells.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Biophysical Theory and Modeling</subject><subject>Cell adhesion & migration</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Movement</subject><subject>Cell Shape</subject><subject>Cellular</subject><subject>Culture</subject><subject>Elongation</subject><subject>Endothelial cells</subject><subject>Fibroblasts</subject><subject>In vitro testing</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Models, Biological</subject><subject>Patterning</subject><subject>Surface Tension</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1PGzEQhq0K1KTQX1CpijjQ06YzXtvrPRQJRdAiBfUA9Gp5bW_iaLNO7d1I_Hs2SmiBA6eRZp555-Ml5AvCFDktv1c-bJaPaTVFkFOkpRDyAxkjZzQDkOKIjAFAZDkr-Yh8SmkFgJQDfiQjlFwUIqdjMrntm84b1zR9o-PkbhND3_l2MblpJ398F8MpOa51k9znQzwhD9dX97Nf2fz3z5vZ5TwzHEWX0cLIHCpd2wqQ2dryUtCSc22NrpgtEGpT1ChLDrWrWG5ylkuuoUJrazRlfkIu9rqbvlo7a1zbRd2oTfRrHR9V0F69rrR-qRZhqyinBZUwCHw7CMTwt3epU2ufdofp1oU-KSkYowyhGMjzd0lRMikBcQDP3oCr0Md2eIOiyIUsCtwtnu8hE0NK0dX_dkZQO6PUs1FDQqq9UUPX15fn_u85ODMAP_aAG56-9S6qZLxrjbM-OtMpG_y7A54A3jel7g</recordid><startdate>20080915</startdate><enddate>20080915</enddate><creator>Szabo, Andras</creator><creator>Mehes, Elod</creator><creator>Kosa, Edina</creator><creator>Czirok, Andras</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20080915</creationdate><title>Multicellular Sprouting In Vitro</title><author>Szabo, Andras ; Mehes, Elod ; Kosa, Edina ; Czirok, Andras</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-27c830bafdb014dfd5962955adcab4d710fc7f18950feb43c34385a0b1ddf1c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Biophysical Theory and Modeling</topic><topic>Cell adhesion & migration</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Movement</topic><topic>Cell Shape</topic><topic>Cellular</topic><topic>Culture</topic><topic>Elongation</topic><topic>Endothelial cells</topic><topic>Fibroblasts</topic><topic>In vitro testing</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Models, Biological</topic><topic>Patterning</topic><topic>Surface Tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabo, Andras</creatorcontrib><creatorcontrib>Mehes, Elod</creatorcontrib><creatorcontrib>Kosa, Edina</creatorcontrib><creatorcontrib>Czirok, Andras</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabo, Andras</au><au>Mehes, Elod</au><au>Kosa, Edina</au><au>Czirok, Andras</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicellular Sprouting In Vitro</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-09-15</date><risdate>2008</risdate><volume>95</volume><issue>6</issue><spage>2702</spage><epage>2710</epage><pages>2702-2710</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Cell motility and its guidance through cell-cell contacts is instrumental in vasculogenesis and in other developmental or pathological processes as well. During vasculogenesis, multicellular sprouts invade rapidly into avascular areas, eventually creating a polygonal pattern. Sprout elongation, in turn, depends on a continuous supply of endothelial cells, streaming along the sprout toward its tip. As long-term videomicroscopy of in vitro cell cultures reveal, cell lines such as C6 gliomas or 3T3 fibroblasts form multicellular linear arrangements in vitro, similar to the multicellular vasculogenic sprouts. We show evidence that close contact with elongated cells enhances and guides cell motility. To model the patterning process we augmented the widely used cellular Potts model with an inherently nonequilibrium interaction whereby surfaces of elongated cells become more preferred adhesion substrates than surfaces of well-spread, isotropic cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18567632</pmid><doi>10.1529/biophysj.108.129668</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2008-09, Vol.95 (6), p.2702-2710 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527280 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adhesion Animals Biophysical Theory and Modeling Cell adhesion & migration Cell culture Cell growth Cell Line Cell Movement Cell Shape Cellular Culture Elongation Endothelial cells Fibroblasts In vitro testing Mice Microscopy Models, Biological Patterning Surface Tension |
title | Multicellular Sprouting In Vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicellular%20Sprouting%20In%20Vitro&rft.jtitle=Biophysical%20journal&rft.au=Szabo,%20Andras&rft.date=2008-09-15&rft.volume=95&rft.issue=6&rft.spage=2702&rft.epage=2710&rft.pages=2702-2710&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.108.129668&rft_dat=%3Cproquest_pubme%3E864424107%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215687719&rft_id=info:pmid/18567632&rft_els_id=S0006349508784157&rfr_iscdi=true |