Bilayer Edge and Curvature Effects on Partitioning of Lipids by Tail Length: Atomistic Simulations
The partitioning of lipids among different microenvironments in a bilayer is of considerable relevance to characterization of composition variations in biomembranes. Atomistic simulation has been ill-suited to model equilibrated lipid mixtures because the time required for diffusive exchange of lipi...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2008-09, Vol.95 (6), p.2647-2657 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2657 |
---|---|
container_issue | 6 |
container_start_page | 2647 |
container_title | Biophysical journal |
container_volume | 95 |
creator | Wang, Hao de Joannis, Jason Jiang, Yong Gaulding, Jeffrey C. Albrecht, Birgit Yin, Fuchang Khanna, Kunal Kindt, James T. |
description | The partitioning of lipids among different microenvironments in a bilayer is of considerable relevance to characterization of composition variations in biomembranes. Atomistic simulation has been ill-suited to model equilibrated lipid mixtures because the time required for diffusive exchange of lipids among microenvironments exceeds typical submicrosecond molecular dynamics trajectories. A method to facilitate local composition fluctuations, using Monte Carlo mutations to change lipid structures within the semigrand-canonical ensemble (at a fixed difference in component chemical potentials, Δμ), was recently implemented to address this challenge. This technique was applied here to mixtures of dimyristoylphosphatidylcholine and a shorter-tail lipid, either symmetric (didecanoylphosphatidylcholine (DDPC)) or asymmetric (hexanoyl-myristoylphosphatidylcholine), arranged in two types of structure: bilayer ribbons and buckled bilayers. In ribbons, the shorter-tail component showed a clear enrichment at the highly curved rim, more so for hexanoyl-myristoylphosphatidylcholine than for DDPC. Results on buckled bilayers were variable. Overall, the DDPC content of buckled bilayers tended to exceed by several percent the DDPC content of flat ones simulated at the same Δμ, but only for mixtures with low overall DDPC content. Within the buckled bilayer structure, no correlation could be resolved between the sign or magnitude of the local curvature of a leaflet and the mean local lipid composition. Results are discussed in terms of packing constraints, surface area/volume ratios, and curvature elasticity. |
doi_str_mv | 10.1529/biophysj.108.131409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349508784108</els_id><sourcerecordid>69488334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-be306c006ea1a02ca7e0bedb5ab7e890f696365c41fa428543e3db5e07c0d2723</originalsourceid><addsrcrecordid>eNp9kVurEzEUhQdRPPXoLxAk-KBPU3OfjKBwLPUCBQWPzyGT2dOmTJOeJFPovzel9fpwngJ7f2tl772q6jnBcyJo-6ZzYb85pu2cYDUnjHDcPqhmRHBaY6zkw2qGMZY14624qp6ktMWYUIHJ4-qKKCEbycis6j640RwhomW_BmR8jxZTPJg8RUDLYQCbEwoefTMxu-yCd36NwoBWbu_6hLojujVuRCvw67x5i25y2LmUnUXf3W4azUmRnlaPBjMmeHZ5r6sfH5e3i8_16uunL4ubVW2FornugGFpy8RgiMHUmgZwB30nTNeAavEgW8mksJwMhlMlOANWuoAbi3vaUHZdvT_77qduB70Fn6MZ9T66nYlHHYzT_3a82-h1OGgqipzzYvD6YhDD3QQp67KMhXE0HsKUtJKcE0kbVchX95Ky5UoxdrJ8-R-4DVP05QyaEiGVwi0rEDtDNoaUIgy_ZyZYn6LWv6IuBaXPURfVi7_X_aO5ZFuAd2cAytEPDqJO1oG30LtYctV9cPd-8BNPR703</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215688093</pqid></control><display><type>article</type><title>Bilayer Edge and Curvature Effects on Partitioning of Lipids by Tail Length: Atomistic Simulations</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Hao ; de Joannis, Jason ; Jiang, Yong ; Gaulding, Jeffrey C. ; Albrecht, Birgit ; Yin, Fuchang ; Khanna, Kunal ; Kindt, James T.</creator><creatorcontrib>Wang, Hao ; de Joannis, Jason ; Jiang, Yong ; Gaulding, Jeffrey C. ; Albrecht, Birgit ; Yin, Fuchang ; Khanna, Kunal ; Kindt, James T.</creatorcontrib><description>The partitioning of lipids among different microenvironments in a bilayer is of considerable relevance to characterization of composition variations in biomembranes. Atomistic simulation has been ill-suited to model equilibrated lipid mixtures because the time required for diffusive exchange of lipids among microenvironments exceeds typical submicrosecond molecular dynamics trajectories. A method to facilitate local composition fluctuations, using Monte Carlo mutations to change lipid structures within the semigrand-canonical ensemble (at a fixed difference in component chemical potentials, Δμ), was recently implemented to address this challenge. This technique was applied here to mixtures of dimyristoylphosphatidylcholine and a shorter-tail lipid, either symmetric (didecanoylphosphatidylcholine (DDPC)) or asymmetric (hexanoyl-myristoylphosphatidylcholine), arranged in two types of structure: bilayer ribbons and buckled bilayers. In ribbons, the shorter-tail component showed a clear enrichment at the highly curved rim, more so for hexanoyl-myristoylphosphatidylcholine than for DDPC. Results on buckled bilayers were variable. Overall, the DDPC content of buckled bilayers tended to exceed by several percent the DDPC content of flat ones simulated at the same Δμ, but only for mixtures with low overall DDPC content. Within the buckled bilayer structure, no correlation could be resolved between the sign or magnitude of the local curvature of a leaflet and the mean local lipid composition. Results are discussed in terms of packing constraints, surface area/volume ratios, and curvature elasticity.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.108.131409</identifier><identifier>PMID: 18567631</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysical Theory and Modeling ; Cellular biology ; Chemical potential ; Computer simulation ; Curvature ; Dimyristoylphosphatidylcholine - chemistry ; Lipid Bilayers - chemistry ; Lipids ; Mathematical analysis ; Membranes ; Models, Molecular ; Molecular Conformation ; Monte Carlo methods ; Partitioning ; Phosphatidylcholines - chemistry ; Phospholipids - chemistry ; Ribbons</subject><ispartof>Biophysical journal, 2008-09, Vol.95 (6), p.2647-2657</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright Biophysical Society Sep 15, 2008</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-be306c006ea1a02ca7e0bedb5ab7e890f696365c41fa428543e3db5e07c0d2723</citedby><cites>FETCH-LOGICAL-c582t-be306c006ea1a02ca7e0bedb5ab7e890f696365c41fa428543e3db5e07c0d2723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527244/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.108.131409$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18567631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>de Joannis, Jason</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Gaulding, Jeffrey C.</creatorcontrib><creatorcontrib>Albrecht, Birgit</creatorcontrib><creatorcontrib>Yin, Fuchang</creatorcontrib><creatorcontrib>Khanna, Kunal</creatorcontrib><creatorcontrib>Kindt, James T.</creatorcontrib><title>Bilayer Edge and Curvature Effects on Partitioning of Lipids by Tail Length: Atomistic Simulations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The partitioning of lipids among different microenvironments in a bilayer is of considerable relevance to characterization of composition variations in biomembranes. Atomistic simulation has been ill-suited to model equilibrated lipid mixtures because the time required for diffusive exchange of lipids among microenvironments exceeds typical submicrosecond molecular dynamics trajectories. A method to facilitate local composition fluctuations, using Monte Carlo mutations to change lipid structures within the semigrand-canonical ensemble (at a fixed difference in component chemical potentials, Δμ), was recently implemented to address this challenge. This technique was applied here to mixtures of dimyristoylphosphatidylcholine and a shorter-tail lipid, either symmetric (didecanoylphosphatidylcholine (DDPC)) or asymmetric (hexanoyl-myristoylphosphatidylcholine), arranged in two types of structure: bilayer ribbons and buckled bilayers. In ribbons, the shorter-tail component showed a clear enrichment at the highly curved rim, more so for hexanoyl-myristoylphosphatidylcholine than for DDPC. Results on buckled bilayers were variable. Overall, the DDPC content of buckled bilayers tended to exceed by several percent the DDPC content of flat ones simulated at the same Δμ, but only for mixtures with low overall DDPC content. Within the buckled bilayer structure, no correlation could be resolved between the sign or magnitude of the local curvature of a leaflet and the mean local lipid composition. Results are discussed in terms of packing constraints, surface area/volume ratios, and curvature elasticity.</description><subject>Biophysical Theory and Modeling</subject><subject>Cellular biology</subject><subject>Chemical potential</subject><subject>Computer simulation</subject><subject>Curvature</subject><subject>Dimyristoylphosphatidylcholine - chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Mathematical analysis</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Monte Carlo methods</subject><subject>Partitioning</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phospholipids - chemistry</subject><subject>Ribbons</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kVurEzEUhQdRPPXoLxAk-KBPU3OfjKBwLPUCBQWPzyGT2dOmTJOeJFPovzel9fpwngJ7f2tl772q6jnBcyJo-6ZzYb85pu2cYDUnjHDcPqhmRHBaY6zkw2qGMZY14624qp6ktMWYUIHJ4-qKKCEbycis6j640RwhomW_BmR8jxZTPJg8RUDLYQCbEwoefTMxu-yCd36NwoBWbu_6hLojujVuRCvw67x5i25y2LmUnUXf3W4azUmRnlaPBjMmeHZ5r6sfH5e3i8_16uunL4ubVW2FornugGFpy8RgiMHUmgZwB30nTNeAavEgW8mksJwMhlMlOANWuoAbi3vaUHZdvT_77qduB70Fn6MZ9T66nYlHHYzT_3a82-h1OGgqipzzYvD6YhDD3QQp67KMhXE0HsKUtJKcE0kbVchX95Ky5UoxdrJ8-R-4DVP05QyaEiGVwi0rEDtDNoaUIgy_ZyZYn6LWv6IuBaXPURfVi7_X_aO5ZFuAd2cAytEPDqJO1oG30LtYctV9cPd-8BNPR703</recordid><startdate>20080915</startdate><enddate>20080915</enddate><creator>Wang, Hao</creator><creator>de Joannis, Jason</creator><creator>Jiang, Yong</creator><creator>Gaulding, Jeffrey C.</creator><creator>Albrecht, Birgit</creator><creator>Yin, Fuchang</creator><creator>Khanna, Kunal</creator><creator>Kindt, James T.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20080915</creationdate><title>Bilayer Edge and Curvature Effects on Partitioning of Lipids by Tail Length: Atomistic Simulations</title><author>Wang, Hao ; de Joannis, Jason ; Jiang, Yong ; Gaulding, Jeffrey C. ; Albrecht, Birgit ; Yin, Fuchang ; Khanna, Kunal ; Kindt, James T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-be306c006ea1a02ca7e0bedb5ab7e890f696365c41fa428543e3db5e07c0d2723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biophysical Theory and Modeling</topic><topic>Cellular biology</topic><topic>Chemical potential</topic><topic>Computer simulation</topic><topic>Curvature</topic><topic>Dimyristoylphosphatidylcholine - chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Mathematical analysis</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Monte Carlo methods</topic><topic>Partitioning</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phospholipids - chemistry</topic><topic>Ribbons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>de Joannis, Jason</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Gaulding, Jeffrey C.</creatorcontrib><creatorcontrib>Albrecht, Birgit</creatorcontrib><creatorcontrib>Yin, Fuchang</creatorcontrib><creatorcontrib>Khanna, Kunal</creatorcontrib><creatorcontrib>Kindt, James T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hao</au><au>de Joannis, Jason</au><au>Jiang, Yong</au><au>Gaulding, Jeffrey C.</au><au>Albrecht, Birgit</au><au>Yin, Fuchang</au><au>Khanna, Kunal</au><au>Kindt, James T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilayer Edge and Curvature Effects on Partitioning of Lipids by Tail Length: Atomistic Simulations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-09-15</date><risdate>2008</risdate><volume>95</volume><issue>6</issue><spage>2647</spage><epage>2657</epage><pages>2647-2657</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The partitioning of lipids among different microenvironments in a bilayer is of considerable relevance to characterization of composition variations in biomembranes. Atomistic simulation has been ill-suited to model equilibrated lipid mixtures because the time required for diffusive exchange of lipids among microenvironments exceeds typical submicrosecond molecular dynamics trajectories. A method to facilitate local composition fluctuations, using Monte Carlo mutations to change lipid structures within the semigrand-canonical ensemble (at a fixed difference in component chemical potentials, Δμ), was recently implemented to address this challenge. This technique was applied here to mixtures of dimyristoylphosphatidylcholine and a shorter-tail lipid, either symmetric (didecanoylphosphatidylcholine (DDPC)) or asymmetric (hexanoyl-myristoylphosphatidylcholine), arranged in two types of structure: bilayer ribbons and buckled bilayers. In ribbons, the shorter-tail component showed a clear enrichment at the highly curved rim, more so for hexanoyl-myristoylphosphatidylcholine than for DDPC. Results on buckled bilayers were variable. Overall, the DDPC content of buckled bilayers tended to exceed by several percent the DDPC content of flat ones simulated at the same Δμ, but only for mixtures with low overall DDPC content. Within the buckled bilayer structure, no correlation could be resolved between the sign or magnitude of the local curvature of a leaflet and the mean local lipid composition. Results are discussed in terms of packing constraints, surface area/volume ratios, and curvature elasticity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18567631</pmid><doi>10.1529/biophysj.108.131409</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2008-09, Vol.95 (6), p.2647-2657 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2527244 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biophysical Theory and Modeling Cellular biology Chemical potential Computer simulation Curvature Dimyristoylphosphatidylcholine - chemistry Lipid Bilayers - chemistry Lipids Mathematical analysis Membranes Models, Molecular Molecular Conformation Monte Carlo methods Partitioning Phosphatidylcholines - chemistry Phospholipids - chemistry Ribbons |
title | Bilayer Edge and Curvature Effects on Partitioning of Lipids by Tail Length: Atomistic Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilayer%20Edge%20and%20Curvature%20Effects%20on%20Partitioning%20of%20Lipids%20by%20Tail%20Length:%20Atomistic%20Simulations&rft.jtitle=Biophysical%20journal&rft.au=Wang,%20Hao&rft.date=2008-09-15&rft.volume=95&rft.issue=6&rft.spage=2647&rft.epage=2657&rft.pages=2647-2657&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.108.131409&rft_dat=%3Cproquest_pubme%3E69488334%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215688093&rft_id=info:pmid/18567631&rft_els_id=S0006349508784108&rfr_iscdi=true |