Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis

A critical issue for clinical utilization of human ES cells (hESCs) is whether they can generate terminally mature progenies with normal function. We recently developed a method for efficient production of hematopoietic progenitors from hESCs by coculture with murine fetal liver-derived stromal cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (35), p.13087-13092
Hauptverfasser: Ma, Feng, Ebihara, Yasuhiro, Umeda, Katsutsugu, Sakai, Hiromi, Hanada, Sachiyo, Zhang, Hong, Zaike, Yuji, Tsuchida, Eishun, Nakahata, Tatsutoshi, Nakauchi, Hiromitsu, Tsuji, Kohichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13092
container_issue 35
container_start_page 13087
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Ma, Feng
Ebihara, Yasuhiro
Umeda, Katsutsugu
Sakai, Hiromi
Hanada, Sachiyo
Zhang, Hong
Zaike, Yuji
Tsuchida, Eishun
Nakahata, Tatsutoshi
Nakauchi, Hiromitsu
Tsuji, Kohichiro
description A critical issue for clinical utilization of human ES cells (hESCs) is whether they can generate terminally mature progenies with normal function. We recently developed a method for efficient production of hematopoietic progenitors from hESCs by coculture with murine fetal liver-derived stromal cells. Large numbers of hESCs-derived erythroid progenitors generated by the coculture enabled us to analyze the development of erythropoiesis at a clone level and investigate their function. The results showed that the globin expression in the erythroid cells in individual clones changed in a time-dependent manner. In particular, embryonic ε-globin-expressing erythroid cells from individual clones decreased, whereas adult-type β-globin-expressing cells increased to [almost equal to]100% in all clones we examined, indicating that the cells undergo definitive hematopoiesis. Enucleated erythrocytes also appeared among the clonal progeny. A comparison analysis showed that hESC-derived erythroid cells took a similar differentiation pathway to human cord blood CD34⁺ progenitor-derived cells when examined for the expression of glycophorin A, CD71 and CD81. Furthermore, these hESC-derived erythroid cells could function as oxygen carriers and had a sufficient glucose-6-phosphate dehydrogenase activity. The present study should provide an experimental model for exploring early development of human erythropoiesis and hemoglobin switching and may help in the discovery of drugs for hereditary diseases in erythrocyte development.
doi_str_mv 10.1073/pnas.0802220105
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2526552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25463995</jstor_id><sourcerecordid>25463995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-6ac804381bb7f40e3569bbd07500a00f844ee0b0cfe05b88972a2134d80bb6503</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEotvCmRNg9YDEIe34M84FCVVQkCpxgJ4tJxl3vUrixXYq9r8nYVdd4NLTjDS_eePnVxSvKFxQqPjldrTpAjQwxoCCfFKsKNS0VKKGp8UKgFWlFkycFKcpbQCglhqeFydUV1LqWq4KvMYRo80-jCQ44qaxXXrbE4y7vI6h3WVMxMUwkPU02JHg0MRdGH1LUsaBtNj3ZYfR32NHOnR-9HnuyRoHm8M2eEw-vSieOdsnfHmoZ8Xt508_rr6UN9-uv159vClbxSCXyrYaBNe0aSonALlUddN0UEkAC-C0EIjQQOsQZKN1XTHLKBedhqZREvhZ8WGvu52aAbsWxxxtb7bRDzbuTLDe_DsZ_drchXvDJFNSslng3UEghp8TpmwGnxaLdsQwJaNqCVVV0UdBBowrrtQMnv8HbsIU5w9eGMprQfWidrmH2hhSiugenkzBLEGbJWhzDHreePO30yN_SHYG3h-AZfMoJw2XhnLQlXFT32f8lWeWPMLOyOs9skk5xAeGSaF4_efc2_3c2WDsXfTJ3H5fDAKVXAou-G96-NGU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201394181</pqid></control><display><type>article</type><title>Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ma, Feng ; Ebihara, Yasuhiro ; Umeda, Katsutsugu ; Sakai, Hiromi ; Hanada, Sachiyo ; Zhang, Hong ; Zaike, Yuji ; Tsuchida, Eishun ; Nakahata, Tatsutoshi ; Nakauchi, Hiromitsu ; Tsuji, Kohichiro</creator><creatorcontrib>Ma, Feng ; Ebihara, Yasuhiro ; Umeda, Katsutsugu ; Sakai, Hiromi ; Hanada, Sachiyo ; Zhang, Hong ; Zaike, Yuji ; Tsuchida, Eishun ; Nakahata, Tatsutoshi ; Nakauchi, Hiromitsu ; Tsuji, Kohichiro</creatorcontrib><description>A critical issue for clinical utilization of human ES cells (hESCs) is whether they can generate terminally mature progenies with normal function. We recently developed a method for efficient production of hematopoietic progenitors from hESCs by coculture with murine fetal liver-derived stromal cells. Large numbers of hESCs-derived erythroid progenitors generated by the coculture enabled us to analyze the development of erythropoiesis at a clone level and investigate their function. The results showed that the globin expression in the erythroid cells in individual clones changed in a time-dependent manner. In particular, embryonic ε-globin-expressing erythroid cells from individual clones decreased, whereas adult-type β-globin-expressing cells increased to [almost equal to]100% in all clones we examined, indicating that the cells undergo definitive hematopoiesis. Enucleated erythrocytes also appeared among the clonal progeny. A comparison analysis showed that hESC-derived erythroid cells took a similar differentiation pathway to human cord blood CD34⁺ progenitor-derived cells when examined for the expression of glycophorin A, CD71 and CD81. Furthermore, these hESC-derived erythroid cells could function as oxygen carriers and had a sufficient glucose-6-phosphate dehydrogenase activity. The present study should provide an experimental model for exploring early development of human erythropoiesis and hemoglobin switching and may help in the discovery of drugs for hereditary diseases in erythrocyte development.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0802220105</identifier><identifier>PMID: 18755895</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal models ; Animals ; Antigens, CD - metabolism ; Biological Sciences ; CD34 antigen ; CD81 antigen ; Cell culture ; Cell Differentiation ; Cell Line ; Clone Cells ; Cloning ; Coculture Techniques ; Comparative analysis ; Cord blood ; Cultured cells ; Differentiation ; Drug development ; Drug discovery ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Embryos ; Erythrocytes ; Erythrocytes - cytology ; Erythrocytes - metabolism ; Erythroid cells ; Erythroid progenitor cells ; Erythropoiesis ; Fetuses ; Flow Cytometry ; Gene expression ; Gene Expression Regulation, Developmental ; Globins - genetics ; Globins - metabolism ; Glucose ; Glucosephosphate dehydrogenase ; Glycophorin - metabolism ; Hematopoiesis ; Hematopoiesis - genetics ; Hematopoietic stem cells ; Hemoglobin ; Hemopoiesis ; Hereditary diseases ; Humans ; Liver - cytology ; Liver - embryology ; Mice ; Oxygen ; Progenitor cells ; Progeny ; Receptors, Transferrin - metabolism ; Stem cells ; Stromal cells ; Stromal Cells - cytology ; Tetraspanin 28 ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (35), p.13087-13092</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 2, 2008</rights><rights>2008 by The National Academy of Sciences of the USA 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-6ac804381bb7f40e3569bbd07500a00f844ee0b0cfe05b88972a2134d80bb6503</citedby><cites>FETCH-LOGICAL-c620t-6ac804381bb7f40e3569bbd07500a00f844ee0b0cfe05b88972a2134d80bb6503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/35.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25463995$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25463995$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18755895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Feng</creatorcontrib><creatorcontrib>Ebihara, Yasuhiro</creatorcontrib><creatorcontrib>Umeda, Katsutsugu</creatorcontrib><creatorcontrib>Sakai, Hiromi</creatorcontrib><creatorcontrib>Hanada, Sachiyo</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zaike, Yuji</creatorcontrib><creatorcontrib>Tsuchida, Eishun</creatorcontrib><creatorcontrib>Nakahata, Tatsutoshi</creatorcontrib><creatorcontrib>Nakauchi, Hiromitsu</creatorcontrib><creatorcontrib>Tsuji, Kohichiro</creatorcontrib><title>Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A critical issue for clinical utilization of human ES cells (hESCs) is whether they can generate terminally mature progenies with normal function. We recently developed a method for efficient production of hematopoietic progenitors from hESCs by coculture with murine fetal liver-derived stromal cells. Large numbers of hESCs-derived erythroid progenitors generated by the coculture enabled us to analyze the development of erythropoiesis at a clone level and investigate their function. The results showed that the globin expression in the erythroid cells in individual clones changed in a time-dependent manner. In particular, embryonic ε-globin-expressing erythroid cells from individual clones decreased, whereas adult-type β-globin-expressing cells increased to [almost equal to]100% in all clones we examined, indicating that the cells undergo definitive hematopoiesis. Enucleated erythrocytes also appeared among the clonal progeny. A comparison analysis showed that hESC-derived erythroid cells took a similar differentiation pathway to human cord blood CD34⁺ progenitor-derived cells when examined for the expression of glycophorin A, CD71 and CD81. Furthermore, these hESC-derived erythroid cells could function as oxygen carriers and had a sufficient glucose-6-phosphate dehydrogenase activity. The present study should provide an experimental model for exploring early development of human erythropoiesis and hemoglobin switching and may help in the discovery of drugs for hereditary diseases in erythrocyte development.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>Biological Sciences</subject><subject>CD34 antigen</subject><subject>CD81 antigen</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Clone Cells</subject><subject>Cloning</subject><subject>Coculture Techniques</subject><subject>Comparative analysis</subject><subject>Cord blood</subject><subject>Cultured cells</subject><subject>Differentiation</subject><subject>Drug development</subject><subject>Drug discovery</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryos</subject><subject>Erythrocytes</subject><subject>Erythrocytes - cytology</subject><subject>Erythrocytes - metabolism</subject><subject>Erythroid cells</subject><subject>Erythroid progenitor cells</subject><subject>Erythropoiesis</subject><subject>Fetuses</subject><subject>Flow Cytometry</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Globins - genetics</subject><subject>Globins - metabolism</subject><subject>Glucose</subject><subject>Glucosephosphate dehydrogenase</subject><subject>Glycophorin - metabolism</subject><subject>Hematopoiesis</subject><subject>Hematopoiesis - genetics</subject><subject>Hematopoietic stem cells</subject><subject>Hemoglobin</subject><subject>Hemopoiesis</subject><subject>Hereditary diseases</subject><subject>Humans</subject><subject>Liver - cytology</subject><subject>Liver - embryology</subject><subject>Mice</subject><subject>Oxygen</subject><subject>Progenitor cells</subject><subject>Progeny</subject><subject>Receptors, Transferrin - metabolism</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Stromal Cells - cytology</subject><subject>Tetraspanin 28</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEotvCmRNg9YDEIe34M84FCVVQkCpxgJ4tJxl3vUrixXYq9r8nYVdd4NLTjDS_eePnVxSvKFxQqPjldrTpAjQwxoCCfFKsKNS0VKKGp8UKgFWlFkycFKcpbQCglhqeFydUV1LqWq4KvMYRo80-jCQ44qaxXXrbE4y7vI6h3WVMxMUwkPU02JHg0MRdGH1LUsaBtNj3ZYfR32NHOnR-9HnuyRoHm8M2eEw-vSieOdsnfHmoZ8Xt508_rr6UN9-uv159vClbxSCXyrYaBNe0aSonALlUddN0UEkAC-C0EIjQQOsQZKN1XTHLKBedhqZREvhZ8WGvu52aAbsWxxxtb7bRDzbuTLDe_DsZ_drchXvDJFNSslng3UEghp8TpmwGnxaLdsQwJaNqCVVV0UdBBowrrtQMnv8HbsIU5w9eGMprQfWidrmH2hhSiugenkzBLEGbJWhzDHreePO30yN_SHYG3h-AZfMoJw2XhnLQlXFT32f8lWeWPMLOyOs9skk5xAeGSaF4_efc2_3c2WDsXfTJ3H5fDAKVXAou-G96-NGU</recordid><startdate>20080902</startdate><enddate>20080902</enddate><creator>Ma, Feng</creator><creator>Ebihara, Yasuhiro</creator><creator>Umeda, Katsutsugu</creator><creator>Sakai, Hiromi</creator><creator>Hanada, Sachiyo</creator><creator>Zhang, Hong</creator><creator>Zaike, Yuji</creator><creator>Tsuchida, Eishun</creator><creator>Nakahata, Tatsutoshi</creator><creator>Nakauchi, Hiromitsu</creator><creator>Tsuji, Kohichiro</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080902</creationdate><title>Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis</title><author>Ma, Feng ; Ebihara, Yasuhiro ; Umeda, Katsutsugu ; Sakai, Hiromi ; Hanada, Sachiyo ; Zhang, Hong ; Zaike, Yuji ; Tsuchida, Eishun ; Nakahata, Tatsutoshi ; Nakauchi, Hiromitsu ; Tsuji, Kohichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-6ac804381bb7f40e3569bbd07500a00f844ee0b0cfe05b88972a2134d80bb6503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>Biological Sciences</topic><topic>CD34 antigen</topic><topic>CD81 antigen</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Clone Cells</topic><topic>Cloning</topic><topic>Coculture Techniques</topic><topic>Comparative analysis</topic><topic>Cord blood</topic><topic>Cultured cells</topic><topic>Differentiation</topic><topic>Drug development</topic><topic>Drug discovery</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryos</topic><topic>Erythrocytes</topic><topic>Erythrocytes - cytology</topic><topic>Erythrocytes - metabolism</topic><topic>Erythroid cells</topic><topic>Erythroid progenitor cells</topic><topic>Erythropoiesis</topic><topic>Fetuses</topic><topic>Flow Cytometry</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Globins - genetics</topic><topic>Globins - metabolism</topic><topic>Glucose</topic><topic>Glucosephosphate dehydrogenase</topic><topic>Glycophorin - metabolism</topic><topic>Hematopoiesis</topic><topic>Hematopoiesis - genetics</topic><topic>Hematopoietic stem cells</topic><topic>Hemoglobin</topic><topic>Hemopoiesis</topic><topic>Hereditary diseases</topic><topic>Humans</topic><topic>Liver - cytology</topic><topic>Liver - embryology</topic><topic>Mice</topic><topic>Oxygen</topic><topic>Progenitor cells</topic><topic>Progeny</topic><topic>Receptors, Transferrin - metabolism</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Stromal Cells - cytology</topic><topic>Tetraspanin 28</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Feng</creatorcontrib><creatorcontrib>Ebihara, Yasuhiro</creatorcontrib><creatorcontrib>Umeda, Katsutsugu</creatorcontrib><creatorcontrib>Sakai, Hiromi</creatorcontrib><creatorcontrib>Hanada, Sachiyo</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Zaike, Yuji</creatorcontrib><creatorcontrib>Tsuchida, Eishun</creatorcontrib><creatorcontrib>Nakahata, Tatsutoshi</creatorcontrib><creatorcontrib>Nakauchi, Hiromitsu</creatorcontrib><creatorcontrib>Tsuji, Kohichiro</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Feng</au><au>Ebihara, Yasuhiro</au><au>Umeda, Katsutsugu</au><au>Sakai, Hiromi</au><au>Hanada, Sachiyo</au><au>Zhang, Hong</au><au>Zaike, Yuji</au><au>Tsuchida, Eishun</au><au>Nakahata, Tatsutoshi</au><au>Nakauchi, Hiromitsu</au><au>Tsuji, Kohichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-09-02</date><risdate>2008</risdate><volume>105</volume><issue>35</issue><spage>13087</spage><epage>13092</epage><pages>13087-13092</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A critical issue for clinical utilization of human ES cells (hESCs) is whether they can generate terminally mature progenies with normal function. We recently developed a method for efficient production of hematopoietic progenitors from hESCs by coculture with murine fetal liver-derived stromal cells. Large numbers of hESCs-derived erythroid progenitors generated by the coculture enabled us to analyze the development of erythropoiesis at a clone level and investigate their function. The results showed that the globin expression in the erythroid cells in individual clones changed in a time-dependent manner. In particular, embryonic ε-globin-expressing erythroid cells from individual clones decreased, whereas adult-type β-globin-expressing cells increased to [almost equal to]100% in all clones we examined, indicating that the cells undergo definitive hematopoiesis. Enucleated erythrocytes also appeared among the clonal progeny. A comparison analysis showed that hESC-derived erythroid cells took a similar differentiation pathway to human cord blood CD34⁺ progenitor-derived cells when examined for the expression of glycophorin A, CD71 and CD81. Furthermore, these hESC-derived erythroid cells could function as oxygen carriers and had a sufficient glucose-6-phosphate dehydrogenase activity. The present study should provide an experimental model for exploring early development of human erythropoiesis and hemoglobin switching and may help in the discovery of drugs for hereditary diseases in erythrocyte development.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18755895</pmid><doi>10.1073/pnas.0802220105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (35), p.13087-13092
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2526552
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animal models
Animals
Antigens, CD - metabolism
Biological Sciences
CD34 antigen
CD81 antigen
Cell culture
Cell Differentiation
Cell Line
Clone Cells
Cloning
Coculture Techniques
Comparative analysis
Cord blood
Cultured cells
Differentiation
Drug development
Drug discovery
Embryonic stem cells
Embryonic Stem Cells - cytology
Embryos
Erythrocytes
Erythrocytes - cytology
Erythrocytes - metabolism
Erythroid cells
Erythroid progenitor cells
Erythropoiesis
Fetuses
Flow Cytometry
Gene expression
Gene Expression Regulation, Developmental
Globins - genetics
Globins - metabolism
Glucose
Glucosephosphate dehydrogenase
Glycophorin - metabolism
Hematopoiesis
Hematopoiesis - genetics
Hematopoietic stem cells
Hemoglobin
Hemopoiesis
Hereditary diseases
Humans
Liver - cytology
Liver - embryology
Mice
Oxygen
Progenitor cells
Progeny
Receptors, Transferrin - metabolism
Stem cells
Stromal cells
Stromal Cells - cytology
Tetraspanin 28
Time Factors
title Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20functional%20erythrocytes%20from%20human%20embryonic%20stem%20cell-derived%20definitive%20hematopoiesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ma,%20Feng&rft.date=2008-09-02&rft.volume=105&rft.issue=35&rft.spage=13087&rft.epage=13092&rft.pages=13087-13092&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0802220105&rft_dat=%3Cjstor_pubme%3E25463995%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201394181&rft_id=info:pmid/18755895&rft_jstor_id=25463995&rfr_iscdi=true