Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir

Lopinavir (LPV) is a second‐generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long‐term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2008-09, Vol.17 (9), p.1555-1564
Hauptverfasser: Šašková, Klára Grantz, Kožíšek, Milan, Lepšík, Martin, Brynda, Jiří, Řezáčová, Pavlína, Václavíková, Jana, Kagan, Ron M., Machala, Ladislav, Konvalinka, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1564
container_issue 9
container_start_page 1555
container_title Protein science
container_volume 17
creator Šašková, Klára Grantz
Kožíšek, Milan
Lepšík, Martin
Brynda, Jiří
Řezáčová, Pavlína
Václavíková, Jana
Kagan, Ron M.
Machala, Ladislav
Konvalinka, Jan
description Lopinavir (LPV) is a second‐generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long‐term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In this study, we show that recombinant PR containing a single I47A substitution has the inhibition constant (Ki) value for lopinavir by two orders of magnitude higher than for the wild‐type PR. The addition of the I47A substitution to the background of a multiply mutated PR species from an AIDS patient showed a three‐order‐of‐magnitude increase in Ki in vitro relative to the patient PR without the I47A mutation. The crystal structure of I47A PR in complex with LPV showed the loss of van der Waals interactions in the S2/S2′ subsites. This is caused by the loss of three side‐chain methyl groups due to the I47A substitution and by structural changes in the A47 main chain that lead to structural changes in the flap antiparallel β‐strand. Furthermore, we analyzed possible interaction of the I47A mutation with secondary mutations V32I and I54V. We show that both mutations in combination with I47A synergistically increase the relative resistance to LPV in vitro. The crystal structure of the I47A/I54V PR double mutant in complex with LPV shows that the I54V mutation leads to a compaction of the flap, and molecular modeling suggests that the introduction of the I54V mutation indirectly affects the strain of the bound inhibitor in the PR binding cleft.
doi_str_mv 10.1110/ps.036079.108
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2525523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19598424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5255-4ec5d807ec0b1c856a70d45fd658e47410a825b9e6af2cd7d767030905cf36403</originalsourceid><addsrcrecordid>eNp9kc2L1TAUxYMoznN06VayctfnTZuk6UYYhtF5MDAiKu5CmqbzImlT8zFS9_7f5vkefmxcXXLPj3NzOAg9J7AlhMCrJW6h4dB2WwLiAdoQyrtKdPzzQ7SBjpNKNFycoScxfgEASurmMTojgnEAQjbox9X8fZ1UshqrecAxhaxTDsqVp3JrtBH7Eae9wTvaXuApp8L6GWs_p2D7nOx8h5P_RQQzZG2KSY7aLMn21tm0HtTr3Se8BJ-MigbbeV-k5AN2frGzurfhKXo0KhfNs9M8Rx_fXH24vK5ubt_uLi9uKs1qxipqNBsEtEZDT3TJoFoYKBsHzoShLSWgRM36znA11npoh5a30EAHTI8Np9Cco9dH3yX3kxm0KSGUk0uwkwqr9MrKf5XZ7uWdv5f14X7dFIOXJ4Pgv2YTk5xsCeucmo3PUZKOdYLWtIDVEdTBxxjM-PsIAXkoTi5RHosrG1H4F3__7A99aqoA9RH4Zp1Z_-8m372_JYyx5icj2KcK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19598424</pqid></control><display><type>article</type><title>Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Šašková, Klára Grantz ; Kožíšek, Milan ; Lepšík, Martin ; Brynda, Jiří ; Řezáčová, Pavlína ; Václavíková, Jana ; Kagan, Ron M. ; Machala, Ladislav ; Konvalinka, Jan</creator><creatorcontrib>Šašková, Klára Grantz ; Kožíšek, Milan ; Lepšík, Martin ; Brynda, Jiří ; Řezáčová, Pavlína ; Václavíková, Jana ; Kagan, Ron M. ; Machala, Ladislav ; Konvalinka, Jan</creatorcontrib><description>Lopinavir (LPV) is a second‐generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long‐term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In this study, we show that recombinant PR containing a single I47A substitution has the inhibition constant (Ki) value for lopinavir by two orders of magnitude higher than for the wild‐type PR. The addition of the I47A substitution to the background of a multiply mutated PR species from an AIDS patient showed a three‐order‐of‐magnitude increase in Ki in vitro relative to the patient PR without the I47A mutation. The crystal structure of I47A PR in complex with LPV showed the loss of van der Waals interactions in the S2/S2′ subsites. This is caused by the loss of three side‐chain methyl groups due to the I47A substitution and by structural changes in the A47 main chain that lead to structural changes in the flap antiparallel β‐strand. Furthermore, we analyzed possible interaction of the I47A mutation with secondary mutations V32I and I54V. We show that both mutations in combination with I47A synergistically increase the relative resistance to LPV in vitro. The crystal structure of the I47A/I54V PR double mutant in complex with LPV shows that the I54V mutation leads to a compaction of the flap, and molecular modeling suggests that the introduction of the I54V mutation indirectly affects the strain of the bound inhibitor in the PR binding cleft.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.036079.108</identifier><identifier>PMID: 18560011</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Alanine - metabolism ; Amino Acid Substitution ; antiviral resistance development ; Catalysis ; Computational Biology ; Disease Susceptibility ; Drug Resistance, Viral - genetics ; enzyme kinetics ; Escherichia coli - genetics ; HIV Protease - chemistry ; HIV Protease - genetics ; HIV Protease - isolation &amp; purification ; HIV Protease - metabolism ; HIV protease inhibitors ; HIV Protease Inhibitors - chemistry ; HIV Protease Inhibitors - metabolism ; HIV Protease Inhibitors - pharmacology ; Human immunodeficiency virus ; Humans ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Kinetics ; Lopinavir ; Models, Molecular ; molecular recognition ; Protein Structure, Secondary ; Pyrimidinones - chemistry ; Pyrimidinones - metabolism ; Pyrimidinones - pharmacology ; Recombinant Proteins - antagonists &amp; inhibitors ; Recombinant Proteins - chemistry ; Recombinant Proteins - isolation &amp; purification ; X‐ray structure</subject><ispartof>Protein science, 2008-09, Vol.17 (9), p.1555-1564</ispartof><rights>Copyright © 2008 The Protein Society</rights><rights>Copyright © 2008 The Protein Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5255-4ec5d807ec0b1c856a70d45fd658e47410a825b9e6af2cd7d767030905cf36403</citedby><cites>FETCH-LOGICAL-c5255-4ec5d807ec0b1c856a70d45fd658e47410a825b9e6af2cd7d767030905cf36403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2525523/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2525523/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18560011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Šašková, Klára Grantz</creatorcontrib><creatorcontrib>Kožíšek, Milan</creatorcontrib><creatorcontrib>Lepšík, Martin</creatorcontrib><creatorcontrib>Brynda, Jiří</creatorcontrib><creatorcontrib>Řezáčová, Pavlína</creatorcontrib><creatorcontrib>Václavíková, Jana</creatorcontrib><creatorcontrib>Kagan, Ron M.</creatorcontrib><creatorcontrib>Machala, Ladislav</creatorcontrib><creatorcontrib>Konvalinka, Jan</creatorcontrib><title>Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Lopinavir (LPV) is a second‐generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long‐term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In this study, we show that recombinant PR containing a single I47A substitution has the inhibition constant (Ki) value for lopinavir by two orders of magnitude higher than for the wild‐type PR. The addition of the I47A substitution to the background of a multiply mutated PR species from an AIDS patient showed a three‐order‐of‐magnitude increase in Ki in vitro relative to the patient PR without the I47A mutation. The crystal structure of I47A PR in complex with LPV showed the loss of van der Waals interactions in the S2/S2′ subsites. This is caused by the loss of three side‐chain methyl groups due to the I47A substitution and by structural changes in the A47 main chain that lead to structural changes in the flap antiparallel β‐strand. Furthermore, we analyzed possible interaction of the I47A mutation with secondary mutations V32I and I54V. We show that both mutations in combination with I47A synergistically increase the relative resistance to LPV in vitro. The crystal structure of the I47A/I54V PR double mutant in complex with LPV shows that the I54V mutation leads to a compaction of the flap, and molecular modeling suggests that the introduction of the I54V mutation indirectly affects the strain of the bound inhibitor in the PR binding cleft.</description><subject>Alanine - metabolism</subject><subject>Amino Acid Substitution</subject><subject>antiviral resistance development</subject><subject>Catalysis</subject><subject>Computational Biology</subject><subject>Disease Susceptibility</subject><subject>Drug Resistance, Viral - genetics</subject><subject>enzyme kinetics</subject><subject>Escherichia coli - genetics</subject><subject>HIV Protease - chemistry</subject><subject>HIV Protease - genetics</subject><subject>HIV Protease - isolation &amp; purification</subject><subject>HIV Protease - metabolism</subject><subject>HIV protease inhibitors</subject><subject>HIV Protease Inhibitors - chemistry</subject><subject>HIV Protease Inhibitors - metabolism</subject><subject>HIV Protease Inhibitors - pharmacology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Lopinavir</subject><subject>Models, Molecular</subject><subject>molecular recognition</subject><subject>Protein Structure, Secondary</subject><subject>Pyrimidinones - chemistry</subject><subject>Pyrimidinones - metabolism</subject><subject>Pyrimidinones - pharmacology</subject><subject>Recombinant Proteins - antagonists &amp; inhibitors</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>X‐ray structure</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2L1TAUxYMoznN06VayctfnTZuk6UYYhtF5MDAiKu5CmqbzImlT8zFS9_7f5vkefmxcXXLPj3NzOAg9J7AlhMCrJW6h4dB2WwLiAdoQyrtKdPzzQ7SBjpNKNFycoScxfgEASurmMTojgnEAQjbox9X8fZ1UshqrecAxhaxTDsqVp3JrtBH7Eae9wTvaXuApp8L6GWs_p2D7nOx8h5P_RQQzZG2KSY7aLMn21tm0HtTr3Se8BJ-MigbbeV-k5AN2frGzurfhKXo0KhfNs9M8Rx_fXH24vK5ubt_uLi9uKs1qxipqNBsEtEZDT3TJoFoYKBsHzoShLSWgRM36znA11npoh5a30EAHTI8Np9Cco9dH3yX3kxm0KSGUk0uwkwqr9MrKf5XZ7uWdv5f14X7dFIOXJ4Pgv2YTk5xsCeucmo3PUZKOdYLWtIDVEdTBxxjM-PsIAXkoTi5RHosrG1H4F3__7A99aqoA9RH4Zp1Z_-8m372_JYyx5icj2KcK</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Šašková, Klára Grantz</creator><creator>Kožíšek, Milan</creator><creator>Lepšík, Martin</creator><creator>Brynda, Jiří</creator><creator>Řezáčová, Pavlína</creator><creator>Václavíková, Jana</creator><creator>Kagan, Ron M.</creator><creator>Machala, Ladislav</creator><creator>Konvalinka, Jan</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>200809</creationdate><title>Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir</title><author>Šašková, Klára Grantz ; Kožíšek, Milan ; Lepšík, Martin ; Brynda, Jiří ; Řezáčová, Pavlína ; Václavíková, Jana ; Kagan, Ron M. ; Machala, Ladislav ; Konvalinka, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5255-4ec5d807ec0b1c856a70d45fd658e47410a825b9e6af2cd7d767030905cf36403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alanine - metabolism</topic><topic>Amino Acid Substitution</topic><topic>antiviral resistance development</topic><topic>Catalysis</topic><topic>Computational Biology</topic><topic>Disease Susceptibility</topic><topic>Drug Resistance, Viral - genetics</topic><topic>enzyme kinetics</topic><topic>Escherichia coli - genetics</topic><topic>HIV Protease - chemistry</topic><topic>HIV Protease - genetics</topic><topic>HIV Protease - isolation &amp; purification</topic><topic>HIV Protease - metabolism</topic><topic>HIV protease inhibitors</topic><topic>HIV Protease Inhibitors - chemistry</topic><topic>HIV Protease Inhibitors - metabolism</topic><topic>HIV Protease Inhibitors - pharmacology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Lopinavir</topic><topic>Models, Molecular</topic><topic>molecular recognition</topic><topic>Protein Structure, Secondary</topic><topic>Pyrimidinones - chemistry</topic><topic>Pyrimidinones - metabolism</topic><topic>Pyrimidinones - pharmacology</topic><topic>Recombinant Proteins - antagonists &amp; inhibitors</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>X‐ray structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šašková, Klára Grantz</creatorcontrib><creatorcontrib>Kožíšek, Milan</creatorcontrib><creatorcontrib>Lepšík, Martin</creatorcontrib><creatorcontrib>Brynda, Jiří</creatorcontrib><creatorcontrib>Řezáčová, Pavlína</creatorcontrib><creatorcontrib>Václavíková, Jana</creatorcontrib><creatorcontrib>Kagan, Ron M.</creatorcontrib><creatorcontrib>Machala, Ladislav</creatorcontrib><creatorcontrib>Konvalinka, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šašková, Klára Grantz</au><au>Kožíšek, Milan</au><au>Lepšík, Martin</au><au>Brynda, Jiří</au><au>Řezáčová, Pavlína</au><au>Václavíková, Jana</au><au>Kagan, Ron M.</au><au>Machala, Ladislav</au><au>Konvalinka, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2008-09</date><risdate>2008</risdate><volume>17</volume><issue>9</issue><spage>1555</spage><epage>1564</epage><pages>1555-1564</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Lopinavir (LPV) is a second‐generation HIV protease inhibitor (PI) designed to overcome resistance development in patients undergoing long‐term antiviral therapy. The mutation of isoleucine at position 47 of the HIV protease (PR) to alanine is associated with a high level of resistance to LPV. In this study, we show that recombinant PR containing a single I47A substitution has the inhibition constant (Ki) value for lopinavir by two orders of magnitude higher than for the wild‐type PR. The addition of the I47A substitution to the background of a multiply mutated PR species from an AIDS patient showed a three‐order‐of‐magnitude increase in Ki in vitro relative to the patient PR without the I47A mutation. The crystal structure of I47A PR in complex with LPV showed the loss of van der Waals interactions in the S2/S2′ subsites. This is caused by the loss of three side‐chain methyl groups due to the I47A substitution and by structural changes in the A47 main chain that lead to structural changes in the flap antiparallel β‐strand. Furthermore, we analyzed possible interaction of the I47A mutation with secondary mutations V32I and I54V. We show that both mutations in combination with I47A synergistically increase the relative resistance to LPV in vitro. The crystal structure of the I47A/I54V PR double mutant in complex with LPV shows that the I54V mutation leads to a compaction of the flap, and molecular modeling suggests that the introduction of the I54V mutation indirectly affects the strain of the bound inhibitor in the PR binding cleft.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>18560011</pmid><doi>10.1110/ps.036079.108</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2008-09, Vol.17 (9), p.1555-1564
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2525523
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alanine - metabolism
Amino Acid Substitution
antiviral resistance development
Catalysis
Computational Biology
Disease Susceptibility
Drug Resistance, Viral - genetics
enzyme kinetics
Escherichia coli - genetics
HIV Protease - chemistry
HIV Protease - genetics
HIV Protease - isolation & purification
HIV Protease - metabolism
HIV protease inhibitors
HIV Protease Inhibitors - chemistry
HIV Protease Inhibitors - metabolism
HIV Protease Inhibitors - pharmacology
Human immunodeficiency virus
Humans
Hydrogen Bonding
Hydrogen-Ion Concentration
Kinetics
Lopinavir
Models, Molecular
molecular recognition
Protein Structure, Secondary
Pyrimidinones - chemistry
Pyrimidinones - metabolism
Pyrimidinones - pharmacology
Recombinant Proteins - antagonists & inhibitors
Recombinant Proteins - chemistry
Recombinant Proteins - isolation & purification
X‐ray structure
title Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T11%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzymatic%20and%20structural%20analysis%20of%20the%20I47A%20mutation%20contributing%20to%20the%20reduced%20susceptibility%20to%20HIV%20protease%20inhibitor%20lopinavir&rft.jtitle=Protein%20science&rft.au=%C5%A0a%C5%A1kov%C3%A1,%20Kl%C3%A1ra%20Grantz&rft.date=2008-09&rft.volume=17&rft.issue=9&rft.spage=1555&rft.epage=1564&rft.pages=1555-1564&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.036079.108&rft_dat=%3Cproquest_pubme%3E19598424%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19598424&rft_id=info:pmid/18560011&rfr_iscdi=true