Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer

Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2008-09, Vol.118 (9), p.3065-3074
Hauptverfasser: Carracedo, Arkaitz, Ma, Li, Teruya-Feldstein, Julie, Rojo, Federico, Salmena, Leonardo, Alimonti, Andrea, Egia, Ainara, Sasaki, Atsuo T, Thomas, George, Kozma, Sara C, Papa, Antonella, Nardella, Caterina, Cantley, Lewis C, Baselga, Jose, Pandolfi, Pier Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3074
container_issue 9
container_start_page 3065
container_title The Journal of clinical investigation
container_volume 118
creator Carracedo, Arkaitz
Ma, Li
Teruya-Feldstein, Julie
Rojo, Federico
Salmena, Leonardo
Alimonti, Andrea
Egia, Ainara
Sasaki, Atsuo T
Thomas, George
Kozma, Sara C
Papa, Antonella
Nardella, Caterina
Cantley, Lewis C
Baselga, Jose
Pandolfi, Pier Paolo
description Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.
doi_str_mv 10.1172/JCI34739
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2518073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A184808763</galeid><sourcerecordid>A184808763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c706t-64e61f35a1ecb0c340156dddaf6955a7324056ec7dbf5ceb9d139b69d1b7eb6f3</originalsourceid><addsrcrecordid>eNqN0lFv0zAQAOAIgVgZSPwCZIE0wUOGHcex8zKpqhiUDXUag1fLcS6NR2KX2NnYv8elBVbUB-QHS_Z357PukuQ5wceE8Oztx9mc5pyWD5IJYUykIqPiYTLBOCNpyak4SJ54f40xyXOWP04OiOAZK4WYJN3ctqYywTiLXIP6q8XljKAOVO1RcOjT9OIMrVRob9UdUjqYG_WLhnZw47JFCl3M6VlawwpsDTagBqCulP6GOudWyFjUjr2ySCurYXiaPGpU5-HZdj9Mvpy-u5p9SM8X7-ez6XmqOS5CWuRQkIYyRUBXWNMcE1bUda2aomRMcZrlmBWgeV01TENV1oSWVRG3ikNVNPQwOdnkXY1VD7WOhQ2qk6vB9Gq4k04ZuXtjTSuX7kZmjAjMaUxwtE0wuO8j-CB74zV0nbLgRi9jHYTnlEf48h947cbBxs_JDGNGGSUkolcbtFQdSGMbFx_V64xySkQusODF-s10j1qChVihs9CYeLzjj_f4uGrojd4b8GYnIJoAP8JSjd7L-efL_7eLr7v26J5tQXWh9a4b14Pid-HrDdSD836A5k9HCJbrOZa_5zjSF_c7-BduB5f-BEiy6Rc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200535311</pqid></control><display><type>article</type><title>Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Carracedo, Arkaitz ; Ma, Li ; Teruya-Feldstein, Julie ; Rojo, Federico ; Salmena, Leonardo ; Alimonti, Andrea ; Egia, Ainara ; Sasaki, Atsuo T ; Thomas, George ; Kozma, Sara C ; Papa, Antonella ; Nardella, Caterina ; Cantley, Lewis C ; Baselga, Jose ; Pandolfi, Pier Paolo</creator><creatorcontrib>Carracedo, Arkaitz ; Ma, Li ; Teruya-Feldstein, Julie ; Rojo, Federico ; Salmena, Leonardo ; Alimonti, Andrea ; Egia, Ainara ; Sasaki, Atsuo T ; Thomas, George ; Kozma, Sara C ; Papa, Antonella ; Nardella, Caterina ; Cantley, Lewis C ; Baselga, Jose ; Pandolfi, Pier Paolo</creatorcontrib><description>Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI34739</identifier><identifier>PMID: 18725988</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Biomedical research ; Biopsy ; Cancer ; Cell growth ; Cell Line, Tumor ; Cell proliferation ; Clinical trials ; Control ; Dosage and administration ; Drug dosages ; Enzyme Activation ; Enzyme Inhibitors - pharmacology ; Everolimus ; Feedback ; Feedback, Physiological ; Gene Expression Regulation, Neoplastic ; Genetic aspects ; Growth factors ; Humans ; Immunosuppressive Agents - pharmacology ; Kinases ; MAP Kinase Signaling System ; Mechanistic Target of Rapamycin Complex 1 ; Metastasis ; Mice ; Multiprotein Complexes ; Neoplasms - enzymology ; Neoplasms - metabolism ; Patients ; Phosphorylation ; Prostate cancer ; Proteins ; Rapamycin ; Risk factors ; Sirolimus - analogs &amp; derivatives ; Sirolimus - pharmacology ; TOR Serine-Threonine Kinases ; Transcription Factors - antagonists &amp; inhibitors ; Tumors</subject><ispartof>The Journal of clinical investigation, 2008-09, Vol.118 (9), p.3065-3074</ispartof><rights>COPYRIGHT 2008 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Sep 2008</rights><rights>Copyright © 2008, American Society for Clinical Investigation 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c706t-64e61f35a1ecb0c340156dddaf6955a7324056ec7dbf5ceb9d139b69d1b7eb6f3</citedby><cites>FETCH-LOGICAL-c706t-64e61f35a1ecb0c340156dddaf6955a7324056ec7dbf5ceb9d139b69d1b7eb6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518073/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518073/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18725988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carracedo, Arkaitz</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Teruya-Feldstein, Julie</creatorcontrib><creatorcontrib>Rojo, Federico</creatorcontrib><creatorcontrib>Salmena, Leonardo</creatorcontrib><creatorcontrib>Alimonti, Andrea</creatorcontrib><creatorcontrib>Egia, Ainara</creatorcontrib><creatorcontrib>Sasaki, Atsuo T</creatorcontrib><creatorcontrib>Thomas, George</creatorcontrib><creatorcontrib>Kozma, Sara C</creatorcontrib><creatorcontrib>Papa, Antonella</creatorcontrib><creatorcontrib>Nardella, Caterina</creatorcontrib><creatorcontrib>Cantley, Lewis C</creatorcontrib><creatorcontrib>Baselga, Jose</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><title>Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biomedical research</subject><subject>Biopsy</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Clinical trials</subject><subject>Control</subject><subject>Dosage and administration</subject><subject>Drug dosages</subject><subject>Enzyme Activation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Everolimus</subject><subject>Feedback</subject><subject>Feedback, Physiological</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic aspects</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immunosuppressive Agents - pharmacology</subject><subject>Kinases</subject><subject>MAP Kinase Signaling System</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Multiprotein Complexes</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - metabolism</subject><subject>Patients</subject><subject>Phosphorylation</subject><subject>Prostate cancer</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Risk factors</subject><subject>Sirolimus - analogs &amp; derivatives</subject><subject>Sirolimus - pharmacology</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transcription Factors - antagonists &amp; inhibitors</subject><subject>Tumors</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0lFv0zAQAOAIgVgZSPwCZIE0wUOGHcex8zKpqhiUDXUag1fLcS6NR2KX2NnYv8elBVbUB-QHS_Z357PukuQ5wceE8Oztx9mc5pyWD5IJYUykIqPiYTLBOCNpyak4SJ54f40xyXOWP04OiOAZK4WYJN3ctqYywTiLXIP6q8XljKAOVO1RcOjT9OIMrVRob9UdUjqYG_WLhnZw47JFCl3M6VlawwpsDTagBqCulP6GOudWyFjUjr2ySCurYXiaPGpU5-HZdj9Mvpy-u5p9SM8X7-ez6XmqOS5CWuRQkIYyRUBXWNMcE1bUda2aomRMcZrlmBWgeV01TENV1oSWVRG3ikNVNPQwOdnkXY1VD7WOhQ2qk6vB9Gq4k04ZuXtjTSuX7kZmjAjMaUxwtE0wuO8j-CB74zV0nbLgRi9jHYTnlEf48h947cbBxs_JDGNGGSUkolcbtFQdSGMbFx_V64xySkQusODF-s10j1qChVihs9CYeLzjj_f4uGrojd4b8GYnIJoAP8JSjd7L-efL_7eLr7v26J5tQXWh9a4b14Pid-HrDdSD836A5k9HCJbrOZa_5zjSF_c7-BduB5f-BEiy6Rc</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Carracedo, Arkaitz</creator><creator>Ma, Li</creator><creator>Teruya-Feldstein, Julie</creator><creator>Rojo, Federico</creator><creator>Salmena, Leonardo</creator><creator>Alimonti, Andrea</creator><creator>Egia, Ainara</creator><creator>Sasaki, Atsuo T</creator><creator>Thomas, George</creator><creator>Kozma, Sara C</creator><creator>Papa, Antonella</creator><creator>Nardella, Caterina</creator><creator>Cantley, Lewis C</creator><creator>Baselga, Jose</creator><creator>Pandolfi, Pier Paolo</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080901</creationdate><title>Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer</title><author>Carracedo, Arkaitz ; Ma, Li ; Teruya-Feldstein, Julie ; Rojo, Federico ; Salmena, Leonardo ; Alimonti, Andrea ; Egia, Ainara ; Sasaki, Atsuo T ; Thomas, George ; Kozma, Sara C ; Papa, Antonella ; Nardella, Caterina ; Cantley, Lewis C ; Baselga, Jose ; Pandolfi, Pier Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c706t-64e61f35a1ecb0c340156dddaf6955a7324056ec7dbf5ceb9d139b69d1b7eb6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biomedical research</topic><topic>Biopsy</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Clinical trials</topic><topic>Control</topic><topic>Dosage and administration</topic><topic>Drug dosages</topic><topic>Enzyme Activation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Everolimus</topic><topic>Feedback</topic><topic>Feedback, Physiological</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic aspects</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immunosuppressive Agents - pharmacology</topic><topic>Kinases</topic><topic>MAP Kinase Signaling System</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Multiprotein Complexes</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - metabolism</topic><topic>Patients</topic><topic>Phosphorylation</topic><topic>Prostate cancer</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Risk factors</topic><topic>Sirolimus - analogs &amp; derivatives</topic><topic>Sirolimus - pharmacology</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transcription Factors - antagonists &amp; inhibitors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carracedo, Arkaitz</creatorcontrib><creatorcontrib>Ma, Li</creatorcontrib><creatorcontrib>Teruya-Feldstein, Julie</creatorcontrib><creatorcontrib>Rojo, Federico</creatorcontrib><creatorcontrib>Salmena, Leonardo</creatorcontrib><creatorcontrib>Alimonti, Andrea</creatorcontrib><creatorcontrib>Egia, Ainara</creatorcontrib><creatorcontrib>Sasaki, Atsuo T</creatorcontrib><creatorcontrib>Thomas, George</creatorcontrib><creatorcontrib>Kozma, Sara C</creatorcontrib><creatorcontrib>Papa, Antonella</creatorcontrib><creatorcontrib>Nardella, Caterina</creatorcontrib><creatorcontrib>Cantley, Lewis C</creatorcontrib><creatorcontrib>Baselga, Jose</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carracedo, Arkaitz</au><au>Ma, Li</au><au>Teruya-Feldstein, Julie</au><au>Rojo, Federico</au><au>Salmena, Leonardo</au><au>Alimonti, Andrea</au><au>Egia, Ainara</au><au>Sasaki, Atsuo T</au><au>Thomas, George</au><au>Kozma, Sara C</au><au>Papa, Antonella</au><au>Nardella, Caterina</au><au>Cantley, Lewis C</au><au>Baselga, Jose</au><au>Pandolfi, Pier Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>118</volume><issue>9</issue><spage>3065</spage><epage>3074</epage><pages>3065-3074</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule-dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>18725988</pmid><doi>10.1172/JCI34739</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2008-09, Vol.118 (9), p.3065-3074
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2518073
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Antineoplastic Agents - pharmacology
Biomedical research
Biopsy
Cancer
Cell growth
Cell Line, Tumor
Cell proliferation
Clinical trials
Control
Dosage and administration
Drug dosages
Enzyme Activation
Enzyme Inhibitors - pharmacology
Everolimus
Feedback
Feedback, Physiological
Gene Expression Regulation, Neoplastic
Genetic aspects
Growth factors
Humans
Immunosuppressive Agents - pharmacology
Kinases
MAP Kinase Signaling System
Mechanistic Target of Rapamycin Complex 1
Metastasis
Mice
Multiprotein Complexes
Neoplasms - enzymology
Neoplasms - metabolism
Patients
Phosphorylation
Prostate cancer
Proteins
Rapamycin
Risk factors
Sirolimus - analogs & derivatives
Sirolimus - pharmacology
TOR Serine-Threonine Kinases
Transcription Factors - antagonists & inhibitors
Tumors
title Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20mTORC1%20leads%20to%20MAPK%20pathway%20activation%20through%20a%20PI3K-dependent%20feedback%20loop%20in%20human%20cancer&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Carracedo,%20Arkaitz&rft.date=2008-09-01&rft.volume=118&rft.issue=9&rft.spage=3065&rft.epage=3074&rft.pages=3065-3074&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI34739&rft_dat=%3Cgale_pubme%3EA184808763%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200535311&rft_id=info:pmid/18725988&rft_galeid=A184808763&rfr_iscdi=true