Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations

We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2008-09, Vol.95 (5), p.2368-2390
Hauptverfasser: Rice, John Jeremy, Wang, Fei, Bers, Donald M., de Tombe, Pieter P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2390
container_issue 5
container_start_page 2368
container_title Biophysical journal
container_volume 95
creator Rice, John Jeremy
Wang, Fei
Bers, Donald M.
de Tombe, Pieter P.
description We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the underlying biophysical mechanisms. We describe new formulations that avoid mean-field approximations found in most existing MF models. To increase the scope and applicability of the model, we include length- and temperature-dependent effects that play important roles in MF responses. We have also included a representation of passive restoring forces to simulate isolated cell shortening protocols. Possessing both computational efficiency and the ability to simulate a wide variety of muscle responses, the MF representation is well suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling mechanisms. To illustrate this suitability, the MF model is coupled to the Chicago rabbit cardiomyocyte model. The combined model generates realistic appearing action potentials, intracellular Ca transients, and cell shortening signals. The combined model also demonstrates that the feedback effects of force on Ca binding to troponin can modify the cytosolic Ca transient.
doi_str_mv 10.1529/biophysj.107.119487
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2517033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950878384X</els_id><sourcerecordid>69433767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-fe2b3affd43a1dccdfd8a4cf40dd302ee5813397e66865ed6fe1ec8ad0e339ae3</originalsourceid><addsrcrecordid>eNp9kk1vEzEQhi0EoqHwC5CQxQFOCf5ar_dApWgpH1KrXujZcuxx6miz3tq7ERF_HoeEz0NPY71-5vXMeBB6ScmCVqx5twpxuNvnzYKSekFpI1T9CM1oJdicECUfoxkhRM65aKoz9CznDSGUVYQ-RWdUMS4UkzP0fTkMKX4LWzMCvo4OOhw9bmMcIJkx7AAvbQnlGHtseofbFHNepeDWgNu97UK_xqHHrUkuGIuvp2w7wLf5oN8UrTdpjz8E7yFBPwbT4cv76addfo6eeNNleHGK5-j24-XX9vP86ubTl3Z5NbeSs3Huga248d4Jbqiz1nmnjLBeEOc4YQCVopw3NUipZAVOeqBglXEEimyAn6OLo-8wrbbgbKkjmU4PqXSd9jqaoP-96cOdXsedZhWtCefF4O3JIMX7CfKotyFb6DrTQ5yyVlIIqlRFC_nmQVI2gvNa1gV8_R-4iVPqyxg0o5VsGOeyQPwI2cPQE_jfNVOiDzugf-1AEWp93IGS9ervdv_knD69AO-PAJSh7wIknW2A3oILCeyoXQwPPvADbwnItg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215692336</pqid></control><display><type>article</type><title>Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals Complete</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Rice, John Jeremy ; Wang, Fei ; Bers, Donald M. ; de Tombe, Pieter P.</creator><creatorcontrib>Rice, John Jeremy ; Wang, Fei ; Bers, Donald M. ; de Tombe, Pieter P.</creatorcontrib><description>We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the underlying biophysical mechanisms. We describe new formulations that avoid mean-field approximations found in most existing MF models. To increase the scope and applicability of the model, we include length- and temperature-dependent effects that play important roles in MF responses. We have also included a representation of passive restoring forces to simulate isolated cell shortening protocols. Possessing both computational efficiency and the ability to simulate a wide variety of muscle responses, the MF representation is well suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling mechanisms. To illustrate this suitability, the MF model is coupled to the Chicago rabbit cardiomyocyte model. The combined model generates realistic appearing action potentials, intracellular Ca transients, and cell shortening signals. The combined model also demonstrates that the feedback effects of force on Ca binding to troponin can modify the cytosolic Ca transient.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.107.119487</identifier><identifier>PMID: 18234826</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actin Cytoskeleton - physiology ; Animals ; Approximation ; Binding ; Biophysics ; Calcium - metabolism ; Cardiac arrhythmia ; Cell Shape ; Cellular biology ; Computational efficiency ; Computer Simulation ; Differential equations ; Electrophysiology ; Isometric Contraction ; Mathematical models ; Models, Biological ; Muscle and Contractility ; Muscles ; Muscular system ; Myocardial Contraction - physiology ; Myocardium - cytology ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; Rabbits ; Representations ; Sarcomeres - physiology ; Troponin C - metabolism</subject><ispartof>Biophysical journal, 2008-09, Vol.95 (5), p.2368-2390</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright Biophysical Society Sep 1, 2008</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-fe2b3affd43a1dccdfd8a4cf40dd302ee5813397e66865ed6fe1ec8ad0e339ae3</citedby><cites>FETCH-LOGICAL-c632t-fe2b3affd43a1dccdfd8a4cf40dd302ee5813397e66865ed6fe1ec8ad0e339ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517033/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.107.119487$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3537,27905,27906,45976,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18234826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rice, John Jeremy</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Bers, Donald M.</creatorcontrib><creatorcontrib>de Tombe, Pieter P.</creatorcontrib><title>Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the underlying biophysical mechanisms. We describe new formulations that avoid mean-field approximations found in most existing MF models. To increase the scope and applicability of the model, we include length- and temperature-dependent effects that play important roles in MF responses. We have also included a representation of passive restoring forces to simulate isolated cell shortening protocols. Possessing both computational efficiency and the ability to simulate a wide variety of muscle responses, the MF representation is well suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling mechanisms. To illustrate this suitability, the MF model is coupled to the Chicago rabbit cardiomyocyte model. The combined model generates realistic appearing action potentials, intracellular Ca transients, and cell shortening signals. The combined model also demonstrates that the feedback effects of force on Ca binding to troponin can modify the cytosolic Ca transient.</description><subject>Actin Cytoskeleton - physiology</subject><subject>Animals</subject><subject>Approximation</subject><subject>Binding</subject><subject>Biophysics</subject><subject>Calcium - metabolism</subject><subject>Cardiac arrhythmia</subject><subject>Cell Shape</subject><subject>Cellular biology</subject><subject>Computational efficiency</subject><subject>Computer Simulation</subject><subject>Differential equations</subject><subject>Electrophysiology</subject><subject>Isometric Contraction</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Muscle and Contractility</subject><subject>Muscles</subject><subject>Muscular system</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocardium - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Rabbits</subject><subject>Representations</subject><subject>Sarcomeres - physiology</subject><subject>Troponin C - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kk1vEzEQhi0EoqHwC5CQxQFOCf5ar_dApWgpH1KrXujZcuxx6miz3tq7ERF_HoeEz0NPY71-5vXMeBB6ScmCVqx5twpxuNvnzYKSekFpI1T9CM1oJdicECUfoxkhRM65aKoz9CznDSGUVYQ-RWdUMS4UkzP0fTkMKX4LWzMCvo4OOhw9bmMcIJkx7AAvbQnlGHtseofbFHNepeDWgNu97UK_xqHHrUkuGIuvp2w7wLf5oN8UrTdpjz8E7yFBPwbT4cv76addfo6eeNNleHGK5-j24-XX9vP86ubTl3Z5NbeSs3Huga248d4Jbqiz1nmnjLBeEOc4YQCVopw3NUipZAVOeqBglXEEimyAn6OLo-8wrbbgbKkjmU4PqXSd9jqaoP-96cOdXsedZhWtCefF4O3JIMX7CfKotyFb6DrTQ5yyVlIIqlRFC_nmQVI2gvNa1gV8_R-4iVPqyxg0o5VsGOeyQPwI2cPQE_jfNVOiDzugf-1AEWp93IGS9ervdv_knD69AO-PAJSh7wIknW2A3oILCeyoXQwPPvADbwnItg</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Rice, John Jeremy</creator><creator>Wang, Fei</creator><creator>Bers, Donald M.</creator><creator>de Tombe, Pieter P.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20080901</creationdate><title>Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations</title><author>Rice, John Jeremy ; Wang, Fei ; Bers, Donald M. ; de Tombe, Pieter P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-fe2b3affd43a1dccdfd8a4cf40dd302ee5813397e66865ed6fe1ec8ad0e339ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Actin Cytoskeleton - physiology</topic><topic>Animals</topic><topic>Approximation</topic><topic>Binding</topic><topic>Biophysics</topic><topic>Calcium - metabolism</topic><topic>Cardiac arrhythmia</topic><topic>Cell Shape</topic><topic>Cellular biology</topic><topic>Computational efficiency</topic><topic>Computer Simulation</topic><topic>Differential equations</topic><topic>Electrophysiology</topic><topic>Isometric Contraction</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Muscle and Contractility</topic><topic>Muscles</topic><topic>Muscular system</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocardium - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Rabbits</topic><topic>Representations</topic><topic>Sarcomeres - physiology</topic><topic>Troponin C - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rice, John Jeremy</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Bers, Donald M.</creatorcontrib><creatorcontrib>de Tombe, Pieter P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rice, John Jeremy</au><au>Wang, Fei</au><au>Bers, Donald M.</au><au>de Tombe, Pieter P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>95</volume><issue>5</issue><spage>2368</spage><epage>2390</epage><pages>2368-2390</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the underlying biophysical mechanisms. We describe new formulations that avoid mean-field approximations found in most existing MF models. To increase the scope and applicability of the model, we include length- and temperature-dependent effects that play important roles in MF responses. We have also included a representation of passive restoring forces to simulate isolated cell shortening protocols. Possessing both computational efficiency and the ability to simulate a wide variety of muscle responses, the MF representation is well suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling mechanisms. To illustrate this suitability, the MF model is coupled to the Chicago rabbit cardiomyocyte model. The combined model generates realistic appearing action potentials, intracellular Ca transients, and cell shortening signals. The combined model also demonstrates that the feedback effects of force on Ca binding to troponin can modify the cytosolic Ca transient.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18234826</pmid><doi>10.1529/biophysj.107.119487</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2008-09, Vol.95 (5), p.2368-2390
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2517033
source MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals Complete; PubMed Central; EZB Electronic Journals Library
subjects Actin Cytoskeleton - physiology
Animals
Approximation
Binding
Biophysics
Calcium - metabolism
Cardiac arrhythmia
Cell Shape
Cellular biology
Computational efficiency
Computer Simulation
Differential equations
Electrophysiology
Isometric Contraction
Mathematical models
Models, Biological
Muscle and Contractility
Muscles
Muscular system
Myocardial Contraction - physiology
Myocardium - cytology
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - physiology
Rabbits
Representations
Sarcomeres - physiology
Troponin C - metabolism
title Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Model%20of%20Cooperative%20Activation%20and%20Crossbridge%20Cycling%20in%20Cardiac%20Muscle%20Using%20Ordinary%20Differential%20Equations&rft.jtitle=Biophysical%20journal&rft.au=Rice,%20John%20Jeremy&rft.date=2008-09-01&rft.volume=95&rft.issue=5&rft.spage=2368&rft.epage=2390&rft.pages=2368-2390&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.107.119487&rft_dat=%3Cproquest_pubme%3E69433767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215692336&rft_id=info:pmid/18234826&rft_els_id=S000634950878384X&rfr_iscdi=true