Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations
We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial inte...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2008-09, Vol.95 (5), p.2368-2390 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2390 |
---|---|
container_issue | 5 |
container_start_page | 2368 |
container_title | Biophysical journal |
container_volume | 95 |
creator | Rice, John Jeremy Wang, Fei Bers, Donald M. de Tombe, Pieter P. |
description | We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the underlying biophysical mechanisms. We describe new formulations that avoid mean-field approximations found in most existing MF models. To increase the scope and applicability of the model, we include length- and temperature-dependent effects that play important roles in MF responses. We have also included a representation of passive restoring forces to simulate isolated cell shortening protocols. Possessing both computational efficiency and the ability to simulate a wide variety of muscle responses, the MF representation is well suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling mechanisms. To illustrate this suitability, the MF model is coupled to the Chicago rabbit cardiomyocyte model. The combined model generates realistic appearing action potentials, intracellular Ca transients, and cell shortening signals. The combined model also demonstrates that the feedback effects of force on Ca binding to troponin can modify the cytosolic Ca transient. |
doi_str_mv | 10.1529/biophysj.107.119487 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2517033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950878384X</els_id><sourcerecordid>69433767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-fe2b3affd43a1dccdfd8a4cf40dd302ee5813397e66865ed6fe1ec8ad0e339ae3</originalsourceid><addsrcrecordid>eNp9kk1vEzEQhi0EoqHwC5CQxQFOCf5ar_dApWgpH1KrXujZcuxx6miz3tq7ERF_HoeEz0NPY71-5vXMeBB6ScmCVqx5twpxuNvnzYKSekFpI1T9CM1oJdicECUfoxkhRM65aKoz9CznDSGUVYQ-RWdUMS4UkzP0fTkMKX4LWzMCvo4OOhw9bmMcIJkx7AAvbQnlGHtseofbFHNepeDWgNu97UK_xqHHrUkuGIuvp2w7wLf5oN8UrTdpjz8E7yFBPwbT4cv76addfo6eeNNleHGK5-j24-XX9vP86ubTl3Z5NbeSs3Huga248d4Jbqiz1nmnjLBeEOc4YQCVopw3NUipZAVOeqBglXEEimyAn6OLo-8wrbbgbKkjmU4PqXSd9jqaoP-96cOdXsedZhWtCefF4O3JIMX7CfKotyFb6DrTQ5yyVlIIqlRFC_nmQVI2gvNa1gV8_R-4iVPqyxg0o5VsGOeyQPwI2cPQE_jfNVOiDzugf-1AEWp93IGS9ervdv_knD69AO-PAJSh7wIknW2A3oILCeyoXQwPPvADbwnItg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215692336</pqid></control><display><type>article</type><title>Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals Complete</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Rice, John Jeremy ; Wang, Fei ; Bers, Donald M. ; de Tombe, Pieter P.</creator><creatorcontrib>Rice, John Jeremy ; Wang, Fei ; Bers, Donald M. ; de Tombe, Pieter P.</creatorcontrib><description>We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the underlying biophysical mechanisms. We describe new formulations that avoid mean-field approximations found in most existing MF models. To increase the scope and applicability of the model, we include length- and temperature-dependent effects that play important roles in MF responses. We have also included a representation of passive restoring forces to simulate isolated cell shortening protocols. Possessing both computational efficiency and the ability to simulate a wide variety of muscle responses, the MF representation is well suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling mechanisms. To illustrate this suitability, the MF model is coupled to the Chicago rabbit cardiomyocyte model. The combined model generates realistic appearing action potentials, intracellular Ca transients, and cell shortening signals. The combined model also demonstrates that the feedback effects of force on Ca binding to troponin can modify the cytosolic Ca transient.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.107.119487</identifier><identifier>PMID: 18234826</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Actin Cytoskeleton - physiology ; Animals ; Approximation ; Binding ; Biophysics ; Calcium - metabolism ; Cardiac arrhythmia ; Cell Shape ; Cellular biology ; Computational efficiency ; Computer Simulation ; Differential equations ; Electrophysiology ; Isometric Contraction ; Mathematical models ; Models, Biological ; Muscle and Contractility ; Muscles ; Muscular system ; Myocardial Contraction - physiology ; Myocardium - cytology ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; Rabbits ; Representations ; Sarcomeres - physiology ; Troponin C - metabolism</subject><ispartof>Biophysical journal, 2008-09, Vol.95 (5), p.2368-2390</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright Biophysical Society Sep 1, 2008</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-fe2b3affd43a1dccdfd8a4cf40dd302ee5813397e66865ed6fe1ec8ad0e339ae3</citedby><cites>FETCH-LOGICAL-c632t-fe2b3affd43a1dccdfd8a4cf40dd302ee5813397e66865ed6fe1ec8ad0e339ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517033/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.107.119487$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3537,27905,27906,45976,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18234826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rice, John Jeremy</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Bers, Donald M.</creatorcontrib><creatorcontrib>de Tombe, Pieter P.</creatorcontrib><title>Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the underlying biophysical mechanisms. We describe new formulations that avoid mean-field approximations found in most existing MF models. To increase the scope and applicability of the model, we include length- and temperature-dependent effects that play important roles in MF responses. We have also included a representation of passive restoring forces to simulate isolated cell shortening protocols. Possessing both computational efficiency and the ability to simulate a wide variety of muscle responses, the MF representation is well suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling mechanisms. To illustrate this suitability, the MF model is coupled to the Chicago rabbit cardiomyocyte model. The combined model generates realistic appearing action potentials, intracellular Ca transients, and cell shortening signals. The combined model also demonstrates that the feedback effects of force on Ca binding to troponin can modify the cytosolic Ca transient.</description><subject>Actin Cytoskeleton - physiology</subject><subject>Animals</subject><subject>Approximation</subject><subject>Binding</subject><subject>Biophysics</subject><subject>Calcium - metabolism</subject><subject>Cardiac arrhythmia</subject><subject>Cell Shape</subject><subject>Cellular biology</subject><subject>Computational efficiency</subject><subject>Computer Simulation</subject><subject>Differential equations</subject><subject>Electrophysiology</subject><subject>Isometric Contraction</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Muscle and Contractility</subject><subject>Muscles</subject><subject>Muscular system</subject><subject>Myocardial Contraction - physiology</subject><subject>Myocardium - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Rabbits</subject><subject>Representations</subject><subject>Sarcomeres - physiology</subject><subject>Troponin C - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kk1vEzEQhi0EoqHwC5CQxQFOCf5ar_dApWgpH1KrXujZcuxx6miz3tq7ERF_HoeEz0NPY71-5vXMeBB6ScmCVqx5twpxuNvnzYKSekFpI1T9CM1oJdicECUfoxkhRM65aKoz9CznDSGUVYQ-RWdUMS4UkzP0fTkMKX4LWzMCvo4OOhw9bmMcIJkx7AAvbQnlGHtseofbFHNepeDWgNu97UK_xqHHrUkuGIuvp2w7wLf5oN8UrTdpjz8E7yFBPwbT4cv76addfo6eeNNleHGK5-j24-XX9vP86ubTl3Z5NbeSs3Huga248d4Jbqiz1nmnjLBeEOc4YQCVopw3NUipZAVOeqBglXEEimyAn6OLo-8wrbbgbKkjmU4PqXSd9jqaoP-96cOdXsedZhWtCefF4O3JIMX7CfKotyFb6DrTQ5yyVlIIqlRFC_nmQVI2gvNa1gV8_R-4iVPqyxg0o5VsGOeyQPwI2cPQE_jfNVOiDzugf-1AEWp93IGS9ervdv_knD69AO-PAJSh7wIknW2A3oILCeyoXQwPPvADbwnItg</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Rice, John Jeremy</creator><creator>Wang, Fei</creator><creator>Bers, Donald M.</creator><creator>de Tombe, Pieter P.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20080901</creationdate><title>Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations</title><author>Rice, John Jeremy ; Wang, Fei ; Bers, Donald M. ; de Tombe, Pieter P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-fe2b3affd43a1dccdfd8a4cf40dd302ee5813397e66865ed6fe1ec8ad0e339ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Actin Cytoskeleton - physiology</topic><topic>Animals</topic><topic>Approximation</topic><topic>Binding</topic><topic>Biophysics</topic><topic>Calcium - metabolism</topic><topic>Cardiac arrhythmia</topic><topic>Cell Shape</topic><topic>Cellular biology</topic><topic>Computational efficiency</topic><topic>Computer Simulation</topic><topic>Differential equations</topic><topic>Electrophysiology</topic><topic>Isometric Contraction</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Muscle and Contractility</topic><topic>Muscles</topic><topic>Muscular system</topic><topic>Myocardial Contraction - physiology</topic><topic>Myocardium - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Rabbits</topic><topic>Representations</topic><topic>Sarcomeres - physiology</topic><topic>Troponin C - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rice, John Jeremy</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Bers, Donald M.</creatorcontrib><creatorcontrib>de Tombe, Pieter P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rice, John Jeremy</au><au>Wang, Fei</au><au>Bers, Donald M.</au><au>de Tombe, Pieter P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>95</volume><issue>5</issue><spage>2368</spage><epage>2390</epage><pages>2368-2390</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the underlying biophysical mechanisms. We describe new formulations that avoid mean-field approximations found in most existing MF models. To increase the scope and applicability of the model, we include length- and temperature-dependent effects that play important roles in MF responses. We have also included a representation of passive restoring forces to simulate isolated cell shortening protocols. Possessing both computational efficiency and the ability to simulate a wide variety of muscle responses, the MF representation is well suited for coupling to existing cardiac cell models of electrophysiology and Ca-handling mechanisms. To illustrate this suitability, the MF model is coupled to the Chicago rabbit cardiomyocyte model. The combined model generates realistic appearing action potentials, intracellular Ca transients, and cell shortening signals. The combined model also demonstrates that the feedback effects of force on Ca binding to troponin can modify the cytosolic Ca transient.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18234826</pmid><doi>10.1529/biophysj.107.119487</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2008-09, Vol.95 (5), p.2368-2390 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2517033 |
source | MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals Complete; PubMed Central; EZB Electronic Journals Library |
subjects | Actin Cytoskeleton - physiology Animals Approximation Binding Biophysics Calcium - metabolism Cardiac arrhythmia Cell Shape Cellular biology Computational efficiency Computer Simulation Differential equations Electrophysiology Isometric Contraction Mathematical models Models, Biological Muscle and Contractility Muscles Muscular system Myocardial Contraction - physiology Myocardium - cytology Myocytes, Cardiac - metabolism Myocytes, Cardiac - physiology Rabbits Representations Sarcomeres - physiology Troponin C - metabolism |
title | Approximate Model of Cooperative Activation and Crossbridge Cycling in Cardiac Muscle Using Ordinary Differential Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Model%20of%20Cooperative%20Activation%20and%20Crossbridge%20Cycling%20in%20Cardiac%20Muscle%20Using%20Ordinary%20Differential%20Equations&rft.jtitle=Biophysical%20journal&rft.au=Rice,%20John%20Jeremy&rft.date=2008-09-01&rft.volume=95&rft.issue=5&rft.spage=2368&rft.epage=2390&rft.pages=2368-2390&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.107.119487&rft_dat=%3Cproquest_pubme%3E69433767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215692336&rft_id=info:pmid/18234826&rft_els_id=S000634950878384X&rfr_iscdi=true |