Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse
Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important struct...
Gespeichert in:
Veröffentlicht in: | Mammalian genome 2008-05, Vol.19 (5), p.339-351 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | 5 |
container_start_page | 339 |
container_title | Mammalian genome |
container_volume | 19 |
creator | McCullagh, Karl J. A. Edwards, Ben Kemp, Matthew W. Giles, Laura C. Burgess, Matthew Davies, Kay E. |
description | Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle. |
doi_str_mv | 10.1007/s00335-008-9120-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2515546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21043383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-be86697bc1c676cf7a5a8831018efb0e3f950ac90f915f9d6cc6a4d63408eee43</originalsourceid><addsrcrecordid>eNp1kUtvEzEUhS1ERUPhB7BBFgt2Q6_H49cGqY14SZEqxGNrOc51O43HLuMZpPx7HCWitBIrL853ju-9h5BXDN4xAHVeADgXDYBuDGuhaZ-QBet42zCl1FOyAMN1o42BU_K8lFsApiRTz8gp08J01bIgXy-Si7vSF5oDLVuMOLlIh7n4iDTMyU99TrRPdLpBuhTqciXPv_1kraFll3zuY5W2Kfttnic65LngC3ISXCz48viekR8fP3xffm5WV5--LC9Wje-Mnpo1aimNWnvmpZI-KCec1pwB0xjWgDwYAc4bCIaJYDbSe-m6jeQdaETs-Bl5f8i9m9cDbjymaXTR3o394Madza63D5XU39jr_Nu2ggnRyRrw9hgw5l8zlskOffEYo0tYF7Etg45zzSv45hF4m-ex3m3PmDowN6JC7AD5MZcyYvg7CQO7b8se2rK1Lbtvy7bV8_rfFe4dx3oq0B6AUqV0jeP9z_9P_QMsdZ_E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219018395</pqid></control><display><type>article</type><title>Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>McCullagh, Karl J. A. ; Edwards, Ben ; Kemp, Matthew W. ; Giles, Laura C. ; Burgess, Matthew ; Davies, Kay E.</creator><creatorcontrib>McCullagh, Karl J. A. ; Edwards, Ben ; Kemp, Matthew W. ; Giles, Laura C. ; Burgess, Matthew ; Davies, Kay E.</creatorcontrib><description>Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.</description><identifier>ISSN: 0938-8990</identifier><identifier>EISSN: 1432-1777</identifier><identifier>DOI: 10.1007/s00335-008-9120-2</identifier><identifier>PMID: 18594912</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Animal Genetics and Genomics ; Animals ; Biomedical and Life Sciences ; Cell Biology ; Female ; Gene Targeting ; Human Genetics ; Intermediate Filament Proteins - analysis ; Intermediate Filament Proteins - genetics ; Intermediate Filament Proteins - metabolism ; Life Sciences ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Muscle Contraction - genetics ; Muscle Contraction - physiology ; Muscle Development - genetics ; Muscle Proteins - analysis ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Protein Binding ; Regeneration - genetics</subject><ispartof>Mammalian genome, 2008-05, Vol.19 (5), p.339-351</ispartof><rights>The Author(s) 2008</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-be86697bc1c676cf7a5a8831018efb0e3f950ac90f915f9d6cc6a4d63408eee43</citedby><cites>FETCH-LOGICAL-c498t-be86697bc1c676cf7a5a8831018efb0e3f950ac90f915f9d6cc6a4d63408eee43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00335-008-9120-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00335-008-9120-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18594912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCullagh, Karl J. A.</creatorcontrib><creatorcontrib>Edwards, Ben</creatorcontrib><creatorcontrib>Kemp, Matthew W.</creatorcontrib><creatorcontrib>Giles, Laura C.</creatorcontrib><creatorcontrib>Burgess, Matthew</creatorcontrib><creatorcontrib>Davies, Kay E.</creatorcontrib><title>Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse</title><title>Mammalian genome</title><addtitle>Mamm Genome</addtitle><addtitle>Mamm Genome</addtitle><description>Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Female</subject><subject>Gene Targeting</subject><subject>Human Genetics</subject><subject>Intermediate Filament Proteins - analysis</subject><subject>Intermediate Filament Proteins - genetics</subject><subject>Intermediate Filament Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Muscle Contraction - genetics</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Development - genetics</subject><subject>Muscle Proteins - analysis</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Protein Binding</subject><subject>Regeneration - genetics</subject><issn>0938-8990</issn><issn>1432-1777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtvEzEUhS1ERUPhB7BBFgt2Q6_H49cGqY14SZEqxGNrOc51O43HLuMZpPx7HCWitBIrL853ju-9h5BXDN4xAHVeADgXDYBuDGuhaZ-QBet42zCl1FOyAMN1o42BU_K8lFsApiRTz8gp08J01bIgXy-Si7vSF5oDLVuMOLlIh7n4iDTMyU99TrRPdLpBuhTqciXPv_1kraFll3zuY5W2Kfttnic65LngC3ISXCz48viekR8fP3xffm5WV5--LC9Wje-Mnpo1aimNWnvmpZI-KCec1pwB0xjWgDwYAc4bCIaJYDbSe-m6jeQdaETs-Bl5f8i9m9cDbjymaXTR3o394Madza63D5XU39jr_Nu2ggnRyRrw9hgw5l8zlskOffEYo0tYF7Etg45zzSv45hF4m-ex3m3PmDowN6JC7AD5MZcyYvg7CQO7b8se2rK1Lbtvy7bV8_rfFe4dx3oq0B6AUqV0jeP9z_9P_QMsdZ_E</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>McCullagh, Karl J. A.</creator><creator>Edwards, Ben</creator><creator>Kemp, Matthew W.</creator><creator>Giles, Laura C.</creator><creator>Burgess, Matthew</creator><creator>Davies, Kay E.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20080501</creationdate><title>Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse</title><author>McCullagh, Karl J. A. ; Edwards, Ben ; Kemp, Matthew W. ; Giles, Laura C. ; Burgess, Matthew ; Davies, Kay E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-be86697bc1c676cf7a5a8831018efb0e3f950ac90f915f9d6cc6a4d63408eee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Female</topic><topic>Gene Targeting</topic><topic>Human Genetics</topic><topic>Intermediate Filament Proteins - analysis</topic><topic>Intermediate Filament Proteins - genetics</topic><topic>Intermediate Filament Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Muscle Contraction - genetics</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Development - genetics</topic><topic>Muscle Proteins - analysis</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Protein Binding</topic><topic>Regeneration - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCullagh, Karl J. A.</creatorcontrib><creatorcontrib>Edwards, Ben</creatorcontrib><creatorcontrib>Kemp, Matthew W.</creatorcontrib><creatorcontrib>Giles, Laura C.</creatorcontrib><creatorcontrib>Burgess, Matthew</creatorcontrib><creatorcontrib>Davies, Kay E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mammalian genome</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCullagh, Karl J. A.</au><au>Edwards, Ben</au><au>Kemp, Matthew W.</au><au>Giles, Laura C.</au><au>Burgess, Matthew</au><au>Davies, Kay E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse</atitle><jtitle>Mammalian genome</jtitle><stitle>Mamm Genome</stitle><addtitle>Mamm Genome</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>19</volume><issue>5</issue><spage>339</spage><epage>351</epage><pages>339-351</pages><issn>0938-8990</issn><eissn>1432-1777</eissn><abstract>Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>18594912</pmid><doi>10.1007/s00335-008-9120-2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-8990 |
ispartof | Mammalian genome, 2008-05, Vol.19 (5), p.339-351 |
issn | 0938-8990 1432-1777 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2515546 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animal Genetics and Genomics Animals Biomedical and Life Sciences Cell Biology Female Gene Targeting Human Genetics Intermediate Filament Proteins - analysis Intermediate Filament Proteins - genetics Intermediate Filament Proteins - metabolism Life Sciences Male Mice Mice, Inbred C57BL Mice, Knockout Muscle Contraction - genetics Muscle Contraction - physiology Muscle Development - genetics Muscle Proteins - analysis Muscle Proteins - genetics Muscle Proteins - metabolism Muscle, Skeletal - cytology Muscle, Skeletal - metabolism Muscle, Skeletal - physiology Protein Binding Regeneration - genetics |
title | Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20skeletal%20muscle%20function%20in%20the%20C57BL6/SV129%20syncoilin%20knockout%20mouse&rft.jtitle=Mammalian%20genome&rft.au=McCullagh,%20Karl%20J.%20A.&rft.date=2008-05-01&rft.volume=19&rft.issue=5&rft.spage=339&rft.epage=351&rft.pages=339-351&rft.issn=0938-8990&rft.eissn=1432-1777&rft_id=info:doi/10.1007/s00335-008-9120-2&rft_dat=%3Cproquest_pubme%3E21043383%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219018395&rft_id=info:pmid/18594912&rfr_iscdi=true |