Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse

Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mammalian genome 2008-05, Vol.19 (5), p.339-351
Hauptverfasser: McCullagh, Karl J. A., Edwards, Ben, Kemp, Matthew W., Giles, Laura C., Burgess, Matthew, Davies, Kay E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 5
container_start_page 339
container_title Mammalian genome
container_volume 19
creator McCullagh, Karl J. A.
Edwards, Ben
Kemp, Matthew W.
Giles, Laura C.
Burgess, Matthew
Davies, Kay E.
description Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.
doi_str_mv 10.1007/s00335-008-9120-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2515546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21043383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-be86697bc1c676cf7a5a8831018efb0e3f950ac90f915f9d6cc6a4d63408eee43</originalsourceid><addsrcrecordid>eNp1kUtvEzEUhS1ERUPhB7BBFgt2Q6_H49cGqY14SZEqxGNrOc51O43HLuMZpPx7HCWitBIrL853ju-9h5BXDN4xAHVeADgXDYBuDGuhaZ-QBet42zCl1FOyAMN1o42BU_K8lFsApiRTz8gp08J01bIgXy-Si7vSF5oDLVuMOLlIh7n4iDTMyU99TrRPdLpBuhTqciXPv_1kraFll3zuY5W2Kfttnic65LngC3ISXCz48viekR8fP3xffm5WV5--LC9Wje-Mnpo1aimNWnvmpZI-KCec1pwB0xjWgDwYAc4bCIaJYDbSe-m6jeQdaETs-Bl5f8i9m9cDbjymaXTR3o394Madza63D5XU39jr_Nu2ggnRyRrw9hgw5l8zlskOffEYo0tYF7Etg45zzSv45hF4m-ex3m3PmDowN6JC7AD5MZcyYvg7CQO7b8se2rK1Lbtvy7bV8_rfFe4dx3oq0B6AUqV0jeP9z_9P_QMsdZ_E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219018395</pqid></control><display><type>article</type><title>Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>McCullagh, Karl J. A. ; Edwards, Ben ; Kemp, Matthew W. ; Giles, Laura C. ; Burgess, Matthew ; Davies, Kay E.</creator><creatorcontrib>McCullagh, Karl J. A. ; Edwards, Ben ; Kemp, Matthew W. ; Giles, Laura C. ; Burgess, Matthew ; Davies, Kay E.</creatorcontrib><description>Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.</description><identifier>ISSN: 0938-8990</identifier><identifier>EISSN: 1432-1777</identifier><identifier>DOI: 10.1007/s00335-008-9120-2</identifier><identifier>PMID: 18594912</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Animal Genetics and Genomics ; Animals ; Biomedical and Life Sciences ; Cell Biology ; Female ; Gene Targeting ; Human Genetics ; Intermediate Filament Proteins - analysis ; Intermediate Filament Proteins - genetics ; Intermediate Filament Proteins - metabolism ; Life Sciences ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Muscle Contraction - genetics ; Muscle Contraction - physiology ; Muscle Development - genetics ; Muscle Proteins - analysis ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Muscle, Skeletal - cytology ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - physiology ; Protein Binding ; Regeneration - genetics</subject><ispartof>Mammalian genome, 2008-05, Vol.19 (5), p.339-351</ispartof><rights>The Author(s) 2008</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-be86697bc1c676cf7a5a8831018efb0e3f950ac90f915f9d6cc6a4d63408eee43</citedby><cites>FETCH-LOGICAL-c498t-be86697bc1c676cf7a5a8831018efb0e3f950ac90f915f9d6cc6a4d63408eee43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00335-008-9120-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00335-008-9120-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18594912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCullagh, Karl J. A.</creatorcontrib><creatorcontrib>Edwards, Ben</creatorcontrib><creatorcontrib>Kemp, Matthew W.</creatorcontrib><creatorcontrib>Giles, Laura C.</creatorcontrib><creatorcontrib>Burgess, Matthew</creatorcontrib><creatorcontrib>Davies, Kay E.</creatorcontrib><title>Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse</title><title>Mammalian genome</title><addtitle>Mamm Genome</addtitle><addtitle>Mamm Genome</addtitle><description>Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Female</subject><subject>Gene Targeting</subject><subject>Human Genetics</subject><subject>Intermediate Filament Proteins - analysis</subject><subject>Intermediate Filament Proteins - genetics</subject><subject>Intermediate Filament Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Muscle Contraction - genetics</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Development - genetics</subject><subject>Muscle Proteins - analysis</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - physiology</subject><subject>Protein Binding</subject><subject>Regeneration - genetics</subject><issn>0938-8990</issn><issn>1432-1777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kUtvEzEUhS1ERUPhB7BBFgt2Q6_H49cGqY14SZEqxGNrOc51O43HLuMZpPx7HCWitBIrL853ju-9h5BXDN4xAHVeADgXDYBuDGuhaZ-QBet42zCl1FOyAMN1o42BU_K8lFsApiRTz8gp08J01bIgXy-Si7vSF5oDLVuMOLlIh7n4iDTMyU99TrRPdLpBuhTqciXPv_1kraFll3zuY5W2Kfttnic65LngC3ISXCz48viekR8fP3xffm5WV5--LC9Wje-Mnpo1aimNWnvmpZI-KCec1pwB0xjWgDwYAc4bCIaJYDbSe-m6jeQdaETs-Bl5f8i9m9cDbjymaXTR3o394Madza63D5XU39jr_Nu2ggnRyRrw9hgw5l8zlskOffEYo0tYF7Etg45zzSv45hF4m-ex3m3PmDowN6JC7AD5MZcyYvg7CQO7b8se2rK1Lbtvy7bV8_rfFe4dx3oq0B6AUqV0jeP9z_9P_QMsdZ_E</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>McCullagh, Karl J. A.</creator><creator>Edwards, Ben</creator><creator>Kemp, Matthew W.</creator><creator>Giles, Laura C.</creator><creator>Burgess, Matthew</creator><creator>Davies, Kay E.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20080501</creationdate><title>Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse</title><author>McCullagh, Karl J. A. ; Edwards, Ben ; Kemp, Matthew W. ; Giles, Laura C. ; Burgess, Matthew ; Davies, Kay E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-be86697bc1c676cf7a5a8831018efb0e3f950ac90f915f9d6cc6a4d63408eee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Female</topic><topic>Gene Targeting</topic><topic>Human Genetics</topic><topic>Intermediate Filament Proteins - analysis</topic><topic>Intermediate Filament Proteins - genetics</topic><topic>Intermediate Filament Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Muscle Contraction - genetics</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Development - genetics</topic><topic>Muscle Proteins - analysis</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - physiology</topic><topic>Protein Binding</topic><topic>Regeneration - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCullagh, Karl J. A.</creatorcontrib><creatorcontrib>Edwards, Ben</creatorcontrib><creatorcontrib>Kemp, Matthew W.</creatorcontrib><creatorcontrib>Giles, Laura C.</creatorcontrib><creatorcontrib>Burgess, Matthew</creatorcontrib><creatorcontrib>Davies, Kay E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mammalian genome</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCullagh, Karl J. A.</au><au>Edwards, Ben</au><au>Kemp, Matthew W.</au><au>Giles, Laura C.</au><au>Burgess, Matthew</au><au>Davies, Kay E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse</atitle><jtitle>Mammalian genome</jtitle><stitle>Mamm Genome</stitle><addtitle>Mamm Genome</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>19</volume><issue>5</issue><spage>339</spage><epage>351</epage><pages>339-351</pages><issn>0938-8990</issn><eissn>1432-1777</eissn><abstract>Syncoilin is a 64-kDa intermediate filament protein expressed in skeletal muscle and enriched at the perinucleus, sarcolemma, and myotendinous and neuromuscular junctions. Due to its pattern of cellular localization and binding partners, syncoilin is an ideal candidate to be both an important structural component of myocytes and a potential mediator of inherited myopathies. Here we present a report of a knockout mouse model for syncoilin and the results of an investigation into the effect of a syncoilin null state on striated muscle function in 6–8-week-old mice. An analysis of proteins known to associate with syncoilin showed that ablation of syncoilin had no effect on absolute expression or spatial localization of desmin or alpha dystrobrevin. Our syncoilin-null animal exhibited no differences in cardiotoxin-induced muscle regeneration, voluntary wheel running, or enforced treadmill exercise capacity, relative to wild-type controls. Finally, a mechanical investigation of isolated soleus and extensor digitorum longus indicated a potential differential reduction in muscle strength and resilience. We are the first to present data identifying an increased susceptibility to muscle damage in response to an extended forced exercise regime in syncoilin-deficient muscle. This study establishes a second viable syncoilin knockout model and highlights the importance of further investigations to determine the role of syncoilin in skeletal muscle.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>18594912</pmid><doi>10.1007/s00335-008-9120-2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0938-8990
ispartof Mammalian genome, 2008-05, Vol.19 (5), p.339-351
issn 0938-8990
1432-1777
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2515546
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animal Genetics and Genomics
Animals
Biomedical and Life Sciences
Cell Biology
Female
Gene Targeting
Human Genetics
Intermediate Filament Proteins - analysis
Intermediate Filament Proteins - genetics
Intermediate Filament Proteins - metabolism
Life Sciences
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Muscle Contraction - genetics
Muscle Contraction - physiology
Muscle Development - genetics
Muscle Proteins - analysis
Muscle Proteins - genetics
Muscle Proteins - metabolism
Muscle, Skeletal - cytology
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Protein Binding
Regeneration - genetics
title Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20skeletal%20muscle%20function%20in%20the%20C57BL6/SV129%20syncoilin%20knockout%20mouse&rft.jtitle=Mammalian%20genome&rft.au=McCullagh,%20Karl%20J.%20A.&rft.date=2008-05-01&rft.volume=19&rft.issue=5&rft.spage=339&rft.epage=351&rft.pages=339-351&rft.issn=0938-8990&rft.eissn=1432-1777&rft_id=info:doi/10.1007/s00335-008-9120-2&rft_dat=%3Cproquest_pubme%3E21043383%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219018395&rft_id=info:pmid/18594912&rfr_iscdi=true