GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore

The protective antigen (PA) moiety of anthrax toxin exists as a stable prepore, converting into the pore form under low pH to translocate the enzymatic components across the host cell membrane. The PA pore rapidly aggregates in solution, and it is now shown that the chaperone GroEL can stabilize the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2008-07, Vol.15 (7), p.754-760
Hauptverfasser: Katayama, Hiroo, Janowiak, Blythe E, Brzozowski, Marek, Juryck, Jordan, Falke, Scott, Gogol, Edward P, Collier, R John, Fisher, Mark T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 7
container_start_page 754
container_title Nature structural & molecular biology
container_volume 15
creator Katayama, Hiroo
Janowiak, Blythe E
Brzozowski, Marek
Juryck, Jordan
Falke, Scott
Gogol, Edward P
Collier, R John
Fisher, Mark T
description The protective antigen (PA) moiety of anthrax toxin exists as a stable prepore, converting into the pore form under low pH to translocate the enzymatic components across the host cell membrane. The PA pore rapidly aggregates in solution, and it is now shown that the chaperone GroEL can stabilize the PA pore, allowing single-particle EM analysis. This method could be useful for other membrane protein complexes. We analyzed the 440-kDa transmembrane pore formed by the protective antigen (PA) moiety of anthrax toxin in the presence of GroEL by negative-stain electron microscopy. GroEL binds both the heptameric PA prepore and the PA pore. The latter interaction retards aggregation of the pore, prolonging its insertion-competent state. Two populations of unaggregated pores were visible: GroEL-bound pores and unbound pores. This allowed two virtually identical structures to be reconstructed, at 25-Å and 28-Å resolution, respectively. The structures were mushroom-shaped objects with a 125-Å-diameter cap and a 100-Å-long stem, consistent with earlier biochemical data. Thus, GroEL provides a platform for obtaining initial glimpses of a membrane protein structure in the absence of lipids or detergents and can function as a scaffold for higher-resolution structural analysis of the PA pore.
doi_str_mv 10.1038/nsmb.1442
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2504863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186823322</galeid><sourcerecordid>A186823322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-531fb46241fd4d84e6e5972167d17b40bfc092f647b4dff8e45889912a558ced3</originalsourceid><addsrcrecordid>eNqFkttq3DAQhk1paQ7tRV-giBYKDexWkiVbugmEkBMsBNL2WsjyaNdBtraSXDZvX5ldkm4bCLqQRvPNz8zwF8UHgucEl-LbEPtmThijr4pDwhmfSSn468e3LA-KoxjvMaac1-Xb4oAIXolceVjcXgV_sUA6Io1678CMTgcUjbbWuxZZn4MURpPGoB3Sg3YPsYvIW5RWkOO0CnqDkt90A1r7AO-KN1a7CO9393Hx8_Lix_n1bHF7dXN-tpgZXtVpxktiG1ZRRmzLWsGgAi5rSqq6JXXDcGMNltRWLAettQIYF0JKQjXnwkBbHhenW9312PTQGhhSblCtQ9fr8KC87tR-ZuhWaul_K8oxE1WZBb7sBIL_NUJMqu-iAef0AH6MqpJUYiLEiyCRvBa1oBn89A9478eQNxYVpaLMA-A6Q5-30FI7UN1gfe7OTIrqjIgqy5R0kpo_Q-XTQt8ZP4Dt8v9ewde9gswk2KSlHmNUN9_vnmVN8DEGsI9bI1hNflKTn9Tkp8x-_HvNT-TOQBk42QIxp4YlhKeh_1f7A_490lc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228358807</pqid></control><display><type>article</type><title>GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Katayama, Hiroo ; Janowiak, Blythe E ; Brzozowski, Marek ; Juryck, Jordan ; Falke, Scott ; Gogol, Edward P ; Collier, R John ; Fisher, Mark T</creator><creatorcontrib>Katayama, Hiroo ; Janowiak, Blythe E ; Brzozowski, Marek ; Juryck, Jordan ; Falke, Scott ; Gogol, Edward P ; Collier, R John ; Fisher, Mark T</creatorcontrib><description>The protective antigen (PA) moiety of anthrax toxin exists as a stable prepore, converting into the pore form under low pH to translocate the enzymatic components across the host cell membrane. The PA pore rapidly aggregates in solution, and it is now shown that the chaperone GroEL can stabilize the PA pore, allowing single-particle EM analysis. This method could be useful for other membrane protein complexes. We analyzed the 440-kDa transmembrane pore formed by the protective antigen (PA) moiety of anthrax toxin in the presence of GroEL by negative-stain electron microscopy. GroEL binds both the heptameric PA prepore and the PA pore. The latter interaction retards aggregation of the pore, prolonging its insertion-competent state. Two populations of unaggregated pores were visible: GroEL-bound pores and unbound pores. This allowed two virtually identical structures to be reconstructed, at 25-Å and 28-Å resolution, respectively. The structures were mushroom-shaped objects with a 125-Å-diameter cap and a 100-Å-long stem, consistent with earlier biochemical data. Thus, GroEL provides a platform for obtaining initial glimpses of a membrane protein structure in the absence of lipids or detergents and can function as a scaffold for higher-resolution structural analysis of the PA pore.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.1442</identifier><identifier>PMID: 18568038</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adenosine Triphosphate - pharmacology ; Anthrax ; Antigens ; Antigens, Bacterial - chemistry ; Antigens, Bacterial - ultrastructure ; Bacterial toxins ; Bacterial Toxins - chemistry ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chaperonin 60 - chemistry ; Chaperonin 60 - metabolism ; Chaperonin 60 - ultrastructure ; Crystallography, X-Ray ; Detergents ; Electron microscopes ; Electron microscopy ; Life Sciences ; Lipids ; Membrane Biology ; Membranes ; Microscopy, Electron ; Models, Molecular ; Molecular biology ; Molecular structure ; Physiological aspects ; Pores ; Protein Binding - drug effects ; Protein Structure ; Proteins ; Structural analysis ; Structure ; technical-report ; Toxins</subject><ispartof>Nature structural &amp; molecular biology, 2008-07, Vol.15 (7), p.754-760</ispartof><rights>Springer Nature America, Inc. 2008</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-531fb46241fd4d84e6e5972167d17b40bfc092f647b4dff8e45889912a558ced3</citedby><cites>FETCH-LOGICAL-c567t-531fb46241fd4d84e6e5972167d17b40bfc092f647b4dff8e45889912a558ced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsmb.1442$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsmb.1442$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18568038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katayama, Hiroo</creatorcontrib><creatorcontrib>Janowiak, Blythe E</creatorcontrib><creatorcontrib>Brzozowski, Marek</creatorcontrib><creatorcontrib>Juryck, Jordan</creatorcontrib><creatorcontrib>Falke, Scott</creatorcontrib><creatorcontrib>Gogol, Edward P</creatorcontrib><creatorcontrib>Collier, R John</creatorcontrib><creatorcontrib>Fisher, Mark T</creatorcontrib><title>GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>The protective antigen (PA) moiety of anthrax toxin exists as a stable prepore, converting into the pore form under low pH to translocate the enzymatic components across the host cell membrane. The PA pore rapidly aggregates in solution, and it is now shown that the chaperone GroEL can stabilize the PA pore, allowing single-particle EM analysis. This method could be useful for other membrane protein complexes. We analyzed the 440-kDa transmembrane pore formed by the protective antigen (PA) moiety of anthrax toxin in the presence of GroEL by negative-stain electron microscopy. GroEL binds both the heptameric PA prepore and the PA pore. The latter interaction retards aggregation of the pore, prolonging its insertion-competent state. Two populations of unaggregated pores were visible: GroEL-bound pores and unbound pores. This allowed two virtually identical structures to be reconstructed, at 25-Å and 28-Å resolution, respectively. The structures were mushroom-shaped objects with a 125-Å-diameter cap and a 100-Å-long stem, consistent with earlier biochemical data. Thus, GroEL provides a platform for obtaining initial glimpses of a membrane protein structure in the absence of lipids or detergents and can function as a scaffold for higher-resolution structural analysis of the PA pore.</description><subject>Adenosine Triphosphate - pharmacology</subject><subject>Anthrax</subject><subject>Antigens</subject><subject>Antigens, Bacterial - chemistry</subject><subject>Antigens, Bacterial - ultrastructure</subject><subject>Bacterial toxins</subject><subject>Bacterial Toxins - chemistry</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chaperonin 60 - chemistry</subject><subject>Chaperonin 60 - metabolism</subject><subject>Chaperonin 60 - ultrastructure</subject><subject>Crystallography, X-Ray</subject><subject>Detergents</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Membrane Biology</subject><subject>Membranes</subject><subject>Microscopy, Electron</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular structure</subject><subject>Physiological aspects</subject><subject>Pores</subject><subject>Protein Binding - drug effects</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Structural analysis</subject><subject>Structure</subject><subject>technical-report</subject><subject>Toxins</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkttq3DAQhk1paQ7tRV-giBYKDexWkiVbugmEkBMsBNL2WsjyaNdBtraSXDZvX5ldkm4bCLqQRvPNz8zwF8UHgucEl-LbEPtmThijr4pDwhmfSSn468e3LA-KoxjvMaac1-Xb4oAIXolceVjcXgV_sUA6Io1678CMTgcUjbbWuxZZn4MURpPGoB3Sg3YPsYvIW5RWkOO0CnqDkt90A1r7AO-KN1a7CO9393Hx8_Lix_n1bHF7dXN-tpgZXtVpxktiG1ZRRmzLWsGgAi5rSqq6JXXDcGMNltRWLAettQIYF0JKQjXnwkBbHhenW9312PTQGhhSblCtQ9fr8KC87tR-ZuhWaul_K8oxE1WZBb7sBIL_NUJMqu-iAef0AH6MqpJUYiLEiyCRvBa1oBn89A9478eQNxYVpaLMA-A6Q5-30FI7UN1gfe7OTIrqjIgqy5R0kpo_Q-XTQt8ZP4Dt8v9ewde9gswk2KSlHmNUN9_vnmVN8DEGsI9bI1hNflKTn9Tkp8x-_HvNT-TOQBk42QIxp4YlhKeh_1f7A_490lc</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Katayama, Hiroo</creator><creator>Janowiak, Blythe E</creator><creator>Brzozowski, Marek</creator><creator>Juryck, Jordan</creator><creator>Falke, Scott</creator><creator>Gogol, Edward P</creator><creator>Collier, R John</creator><creator>Fisher, Mark T</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7U7</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore</title><author>Katayama, Hiroo ; Janowiak, Blythe E ; Brzozowski, Marek ; Juryck, Jordan ; Falke, Scott ; Gogol, Edward P ; Collier, R John ; Fisher, Mark T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-531fb46241fd4d84e6e5972167d17b40bfc092f647b4dff8e45889912a558ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine Triphosphate - pharmacology</topic><topic>Anthrax</topic><topic>Antigens</topic><topic>Antigens, Bacterial - chemistry</topic><topic>Antigens, Bacterial - ultrastructure</topic><topic>Bacterial toxins</topic><topic>Bacterial Toxins - chemistry</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chaperonin 60 - chemistry</topic><topic>Chaperonin 60 - metabolism</topic><topic>Chaperonin 60 - ultrastructure</topic><topic>Crystallography, X-Ray</topic><topic>Detergents</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Membrane Biology</topic><topic>Membranes</topic><topic>Microscopy, Electron</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular structure</topic><topic>Physiological aspects</topic><topic>Pores</topic><topic>Protein Binding - drug effects</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Structural analysis</topic><topic>Structure</topic><topic>technical-report</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katayama, Hiroo</creatorcontrib><creatorcontrib>Janowiak, Blythe E</creatorcontrib><creatorcontrib>Brzozowski, Marek</creatorcontrib><creatorcontrib>Juryck, Jordan</creatorcontrib><creatorcontrib>Falke, Scott</creatorcontrib><creatorcontrib>Gogol, Edward P</creatorcontrib><creatorcontrib>Collier, R John</creatorcontrib><creatorcontrib>Fisher, Mark T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Toxicology Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katayama, Hiroo</au><au>Janowiak, Blythe E</au><au>Brzozowski, Marek</au><au>Juryck, Jordan</au><au>Falke, Scott</au><au>Gogol, Edward P</au><au>Collier, R John</au><au>Fisher, Mark T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>15</volume><issue>7</issue><spage>754</spage><epage>760</epage><pages>754-760</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>The protective antigen (PA) moiety of anthrax toxin exists as a stable prepore, converting into the pore form under low pH to translocate the enzymatic components across the host cell membrane. The PA pore rapidly aggregates in solution, and it is now shown that the chaperone GroEL can stabilize the PA pore, allowing single-particle EM analysis. This method could be useful for other membrane protein complexes. We analyzed the 440-kDa transmembrane pore formed by the protective antigen (PA) moiety of anthrax toxin in the presence of GroEL by negative-stain electron microscopy. GroEL binds both the heptameric PA prepore and the PA pore. The latter interaction retards aggregation of the pore, prolonging its insertion-competent state. Two populations of unaggregated pores were visible: GroEL-bound pores and unbound pores. This allowed two virtually identical structures to be reconstructed, at 25-Å and 28-Å resolution, respectively. The structures were mushroom-shaped objects with a 125-Å-diameter cap and a 100-Å-long stem, consistent with earlier biochemical data. Thus, GroEL provides a platform for obtaining initial glimpses of a membrane protein structure in the absence of lipids or detergents and can function as a scaffold for higher-resolution structural analysis of the PA pore.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>18568038</pmid><doi>10.1038/nsmb.1442</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2008-07, Vol.15 (7), p.754-760
issn 1545-9993
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2504863
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects Adenosine Triphosphate - pharmacology
Anthrax
Antigens
Antigens, Bacterial - chemistry
Antigens, Bacterial - ultrastructure
Bacterial toxins
Bacterial Toxins - chemistry
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Chaperonin 60 - chemistry
Chaperonin 60 - metabolism
Chaperonin 60 - ultrastructure
Crystallography, X-Ray
Detergents
Electron microscopes
Electron microscopy
Life Sciences
Lipids
Membrane Biology
Membranes
Microscopy, Electron
Models, Molecular
Molecular biology
Molecular structure
Physiological aspects
Pores
Protein Binding - drug effects
Protein Structure
Proteins
Structural analysis
Structure
technical-report
Toxins
title GroEL as a molecular scaffold for structural analysis of the anthrax toxin pore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GroEL%20as%20a%20molecular%20scaffold%20for%20structural%20analysis%20of%20the%20anthrax%20toxin%20pore&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Katayama,%20Hiroo&rft.date=2008-07-01&rft.volume=15&rft.issue=7&rft.spage=754&rft.epage=760&rft.pages=754-760&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.1442&rft_dat=%3Cgale_pubme%3EA186823322%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228358807&rft_id=info:pmid/18568038&rft_galeid=A186823322&rfr_iscdi=true