Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes

In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2008-08, Vol.36 (13), p.4364-4380
Hauptverfasser: Segerstolpe, Åsa, Lundkvist, Pär, Osheim, Yvonne N, Beyer, Ann L, Wieslander, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4380
container_issue 13
container_start_page 4364
container_title Nucleic acids research
container_volume 36
creator Segerstolpe, Åsa
Lundkvist, Pär
Osheim, Yvonne N
Beyer, Ann L
Wieslander, Lars
description In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A₀-A₂ sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex.
doi_str_mv 10.1093/nar/gkn384
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2490760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkn384</oup_id><sourcerecordid>20952180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-e6e042a45c128c2c05b9f97a1323f5e36be72ee7dc0419dbde24137a6be2bc7d3</originalsourceid><addsrcrecordid>eNqF0l1r1TAYB_Aiijub3vgBNAjzQqjLW5v2RhhTN3FT1B0Rb0KaPD3L1iZd0or7KH5bc-xh013oTQLJL_8nCU-WPSL4BcE123Mq7K0uHKv4nWxBWElzXpf0brbADBc5wbzayrZjPMeYcFLw-9kWqYqqrKhYZD9PgiEDaqwzEY0eDQHy8On9PgIVuitkpmDdCo1BuaiDHUbrHUoWBkiDG5Fv0ZKh6Pz6jHIG2YgCXE42gEGtD0j7flD697lkxzO4KWFdKhh71XUoTs3k7Jj2vIYYfQ_xQXavVV2Eh5t5J1u-eX16cJQffzh8e7B_nOuClmMOJWBOFS80oZWmGhdN3dZCEUZZWwArGxAUQBiNOalNY4BywoRK67TRwrCd7OWcO0xND0anVwXVySHYXoUr6ZWVf-84eyZX_rukvMaixCng2SYg-MsJ4ih7GzV0nXLgpyjLmjFRC_FfSHFdUFKtE5_egud-Ci79QjK4pJwSntDzGengYwzQXl-ZYLnuC5n6Qs59kfDjPx95QzeNkMDuDPw0_Dson52NI_y4lipcyFIwUcijr9-kqF69-8hOD-WX5J_MvlVeqlWwUS4_U0wYxnUqTir2C6S_3Ek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200624214</pqid></control><display><type>article</type><title>Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Segerstolpe, Åsa ; Lundkvist, Pär ; Osheim, Yvonne N ; Beyer, Ann L ; Wieslander, Lars</creator><creatorcontrib>Segerstolpe, Åsa ; Lundkvist, Pär ; Osheim, Yvonne N ; Beyer, Ann L ; Wieslander, Lars</creatorcontrib><description>In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A₀-A₂ sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkn384</identifier><identifier>PMID: 18586827</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Nucleolus - metabolism ; Cell Nucleus - metabolism ; Mutation ; Phosphoproteins - metabolism ; Recombinant Fusion Proteins - metabolism ; Ribonucleoproteins - metabolism ; Ribosomal Proteins ; Ribosome Subunits, Small, Eukaryotic - chemistry ; Ribosome Subunits, Small, Eukaryotic - metabolism ; RNA ; RNA Precursors - metabolism ; RNA Processing, Post-Transcriptional ; RNA, Ribosomal - metabolism ; RNA, Small Nucleolar - metabolism ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription, Genetic</subject><ispartof>Nucleic acids research, 2008-08, Vol.36 (13), p.4364-4380</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-e6e042a45c128c2c05b9f97a1323f5e36be72ee7dc0419dbde24137a6be2bc7d3</citedby><cites>FETCH-LOGICAL-c526t-e6e042a45c128c2c05b9f97a1323f5e36be72ee7dc0419dbde24137a6be2bc7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490760/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2490760/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18586827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Segerstolpe, Åsa</creatorcontrib><creatorcontrib>Lundkvist, Pär</creatorcontrib><creatorcontrib>Osheim, Yvonne N</creatorcontrib><creatorcontrib>Beyer, Ann L</creatorcontrib><creatorcontrib>Wieslander, Lars</creatorcontrib><title>Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A₀-A₂ sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex.</description><subject>Cell Nucleolus - metabolism</subject><subject>Cell Nucleus - metabolism</subject><subject>Mutation</subject><subject>Phosphoproteins - metabolism</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Ribonucleoproteins - metabolism</subject><subject>Ribosomal Proteins</subject><subject>Ribosome Subunits, Small, Eukaryotic - chemistry</subject><subject>Ribosome Subunits, Small, Eukaryotic - metabolism</subject><subject>RNA</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Ribosomal - metabolism</subject><subject>RNA, Small Nucleolar - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription, Genetic</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqF0l1r1TAYB_Aiijub3vgBNAjzQqjLW5v2RhhTN3FT1B0Rb0KaPD3L1iZd0or7KH5bc-xh013oTQLJL_8nCU-WPSL4BcE123Mq7K0uHKv4nWxBWElzXpf0brbADBc5wbzayrZjPMeYcFLw-9kWqYqqrKhYZD9PgiEDaqwzEY0eDQHy8On9PgIVuitkpmDdCo1BuaiDHUbrHUoWBkiDG5Fv0ZKh6Pz6jHIG2YgCXE42gEGtD0j7flD697lkxzO4KWFdKhh71XUoTs3k7Jj2vIYYfQ_xQXavVV2Eh5t5J1u-eX16cJQffzh8e7B_nOuClmMOJWBOFS80oZWmGhdN3dZCEUZZWwArGxAUQBiNOalNY4BywoRK67TRwrCd7OWcO0xND0anVwXVySHYXoUr6ZWVf-84eyZX_rukvMaixCng2SYg-MsJ4ih7GzV0nXLgpyjLmjFRC_FfSHFdUFKtE5_egud-Ci79QjK4pJwSntDzGengYwzQXl-ZYLnuC5n6Qs59kfDjPx95QzeNkMDuDPw0_Dson52NI_y4lipcyFIwUcijr9-kqF69-8hOD-WX5J_MvlVeqlWwUS4_U0wYxnUqTir2C6S_3Ek</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Segerstolpe, Åsa</creator><creator>Lundkvist, Pär</creator><creator>Osheim, Yvonne N</creator><creator>Beyer, Ann L</creator><creator>Wieslander, Lars</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080801</creationdate><title>Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes</title><author>Segerstolpe, Åsa ; Lundkvist, Pär ; Osheim, Yvonne N ; Beyer, Ann L ; Wieslander, Lars</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-e6e042a45c128c2c05b9f97a1323f5e36be72ee7dc0419dbde24137a6be2bc7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cell Nucleolus - metabolism</topic><topic>Cell Nucleus - metabolism</topic><topic>Mutation</topic><topic>Phosphoproteins - metabolism</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Ribonucleoproteins - metabolism</topic><topic>Ribosomal Proteins</topic><topic>Ribosome Subunits, Small, Eukaryotic - chemistry</topic><topic>Ribosome Subunits, Small, Eukaryotic - metabolism</topic><topic>RNA</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Ribosomal - metabolism</topic><topic>RNA, Small Nucleolar - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segerstolpe, Åsa</creatorcontrib><creatorcontrib>Lundkvist, Pär</creatorcontrib><creatorcontrib>Osheim, Yvonne N</creatorcontrib><creatorcontrib>Beyer, Ann L</creatorcontrib><creatorcontrib>Wieslander, Lars</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segerstolpe, Åsa</au><au>Lundkvist, Pär</au><au>Osheim, Yvonne N</au><au>Beyer, Ann L</au><au>Wieslander, Lars</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>36</volume><issue>13</issue><spage>4364</spage><epage>4380</epage><pages>4364-4380</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A₀-A₂ sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18586827</pmid><doi>10.1093/nar/gkn384</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2008-08, Vol.36 (13), p.4364-4380
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2490760
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cell Nucleolus - metabolism
Cell Nucleus - metabolism
Mutation
Phosphoproteins - metabolism
Recombinant Fusion Proteins - metabolism
Ribonucleoproteins - metabolism
Ribosomal Proteins
Ribosome Subunits, Small, Eukaryotic - chemistry
Ribosome Subunits, Small, Eukaryotic - metabolism
RNA
RNA Precursors - metabolism
RNA Processing, Post-Transcriptional
RNA, Ribosomal - metabolism
RNA, Small Nucleolar - metabolism
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcription, Genetic
title Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mrd1p%20binds%20to%20pre-rRNA%20early%20during%20transcription%20independent%20of%20U3%20snoRNA%20and%20is%20required%20for%20compaction%20of%20the%20pre-rRNA%20into%20small%20subunit%20processomes&rft.jtitle=Nucleic%20acids%20research&rft.au=Segerstolpe,%20%C3%85sa&rft.date=2008-08-01&rft.volume=36&rft.issue=13&rft.spage=4364&rft.epage=4380&rft.pages=4364-4380&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkn384&rft_dat=%3Cproquest_pubme%3E20952180%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200624214&rft_id=info:pmid/18586827&rft_oup_id=10.1093/nar/gkn384&rfr_iscdi=true