Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase

An extremely low‐field signal (at approximately 18 p.p.m.) in the 1H NMR spectrum of rhamnogalacturonan acetylesterase (RGAE) shows the presence of a short strong hydrogen bond in the structure. This signal was also present in the mutant RGAE D192N, in which Asp192, which is part of the catalytic tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2008-08, Vol.64 (8), p.851-863
Hauptverfasser: Langkilde, Annette, Kristensen, Søren M., Lo Leggio, Leila, Mølgaard, Anne, Jensen, Jan H., Houk, Andrew R., Navarro Poulsen, Jens-Christian, Kauppinen, Sakari, Larsen, Sine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 863
container_issue 8
container_start_page 851
container_title Acta crystallographica. Section D, Biological crystallography.
container_volume 64
creator Langkilde, Annette
Kristensen, Søren M.
Lo Leggio, Leila
Mølgaard, Anne
Jensen, Jan H.
Houk, Andrew R.
Navarro Poulsen, Jens-Christian
Kauppinen, Sakari
Larsen, Sine
description An extremely low‐field signal (at approximately 18 p.p.m.) in the 1H NMR spectrum of rhamnogalacturonan acetylesterase (RGAE) shows the presence of a short strong hydrogen bond in the structure. This signal was also present in the mutant RGAE D192N, in which Asp192, which is part of the catalytic triad, has been replaced with Asn. A careful analysis of wild‐type RGAE and RGAE D192N was conducted with the purpose of identifying possible candidates for the short hydrogen bond with the 18 p.p.m. deshielded proton. Theoretical calculations of chemical shift values were used in the interpretation of the experimental 1H NMR spectra. The crystal structure of RGAE D192N was determined to 1.33 Å resolution and refined to an R value of 11.6% for all data. The structure is virtually identical to the high‐resolution (1.12 Å) structure of the wild‐type enzyme except for the interactions involving the mutation and a disordered loop. Searches of the Cambridge Structural Database were conducted to obtain information on the donor–acceptor distances of different types of hydrogen bonds. The short hydrogen‐bond interactions found in RGAE have equivalents in small‐molecule structures. An examination of the short hydrogen bonds in RGAE, the calculated pKa values and solvent‐accessibilities identified a buried carboxylic acid carboxylate hydrogen bond between Asp75 and Asp87 as the likely origin of the 18 p.p.m. signal. Similar hydrogen‐bond interactions between two Asp or Glu carboxy groups were found in 16% of a homology‐reduced set of high‐quality structures extracted from the PDB. The shortest hydrogen bonds in RGAE are all located close to the active site and short interactions between Ser and Thr side‐chain OH groups and backbone carbonyl O atoms seem to play an important role in the stability of the protein structure. These results illustrate the significance of short strong hydrogen bonds in proteins.
doi_str_mv 10.1107/S0907444908017083
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2483496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35153968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5436-679fb1cfa0ab069efe0d40e9d8c27348d7be65333c17ce2be2704ad160e1b4ca3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEoqXwA7ggS0jcAuPYiRMOSFVLF6QKDgVR9mI5zmRjyNpb26HNv8dVVqWIAydb8vee583LsucUXlMK4s0FNCA45w3UQAXU7EF2SFnT5ABcPLx3P8iehPADAIqCicfZAa0rXhaMH2bri8H5SEL0zm7IMHfebdCS1tkuEGPJzruIxoa3RBGtAiZy6mbieuIHtbVuo0al45TUyhKlMc4jhog-oU-zR70aAz7bn0fZ17P3X04-5OefVx9Pjs9zXXJW5ZVo-pbqXoFqoWqwR-g4YNPVuhCM151osSoZY5oKjUWLhQCuOloB0pZrxY6yd4vvbmq32Gm00atR7rzZKj9Lp4z8-8WaQW7cL1nwmvGmSgYvFwMXopFBm4h60M5a1FGmjfG03TJRr_bfeHc1pZBya4LGcVQW3RQkKxPUVHUC6QJq70Lw2N-NQkHe9ib_6S1pXtzP8EexLyoB9QJcmxHn_zvK4--nq8uSFrfx8kVqUjE3d1Llf8pKMFHKb59W8nS9ri7P1isJ7De95LSz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35153968</pqid></control><display><type>article</type><title>Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Langkilde, Annette ; Kristensen, Søren M. ; Lo Leggio, Leila ; Mølgaard, Anne ; Jensen, Jan H. ; Houk, Andrew R. ; Navarro Poulsen, Jens-Christian ; Kauppinen, Sakari ; Larsen, Sine</creator><creatorcontrib>Langkilde, Annette ; Kristensen, Søren M. ; Lo Leggio, Leila ; Mølgaard, Anne ; Jensen, Jan H. ; Houk, Andrew R. ; Navarro Poulsen, Jens-Christian ; Kauppinen, Sakari ; Larsen, Sine</creatorcontrib><description>An extremely low‐field signal (at approximately 18 p.p.m.) in the 1H NMR spectrum of rhamnogalacturonan acetylesterase (RGAE) shows the presence of a short strong hydrogen bond in the structure. This signal was also present in the mutant RGAE D192N, in which Asp192, which is part of the catalytic triad, has been replaced with Asn. A careful analysis of wild‐type RGAE and RGAE D192N was conducted with the purpose of identifying possible candidates for the short hydrogen bond with the 18 p.p.m. deshielded proton. Theoretical calculations of chemical shift values were used in the interpretation of the experimental 1H NMR spectra. The crystal structure of RGAE D192N was determined to 1.33 Å resolution and refined to an R value of 11.6% for all data. The structure is virtually identical to the high‐resolution (1.12 Å) structure of the wild‐type enzyme except for the interactions involving the mutation and a disordered loop. Searches of the Cambridge Structural Database were conducted to obtain information on the donor–acceptor distances of different types of hydrogen bonds. The short hydrogen‐bond interactions found in RGAE have equivalents in small‐molecule structures. An examination of the short hydrogen bonds in RGAE, the calculated pKa values and solvent‐accessibilities identified a buried carboxylic acid carboxylate hydrogen bond between Asp75 and Asp87 as the likely origin of the 18 p.p.m. signal. Similar hydrogen‐bond interactions between two Asp or Glu carboxy groups were found in 16% of a homology‐reduced set of high‐quality structures extracted from the PDB. The shortest hydrogen bonds in RGAE are all located close to the active site and short interactions between Ser and Thr side‐chain OH groups and backbone carbonyl O atoms seem to play an important role in the stability of the protein structure. These results illustrate the significance of short strong hydrogen bonds in proteins.</description><identifier>ISSN: 1399-0047</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S0907444908017083</identifier><identifier>PMID: 18645234</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Acetylesterase - chemistry ; Acetylesterase - genetics ; Amino Acid Substitution ; ATOMS ; CARBONYLS ; CHEMICAL SHIFT ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; CRYSTALS ; HYDROGEN ; Hydrogen Bonding ; INTERACTIONS ; low-field NMR signals ; Models, Molecular ; MOLECULES ; NMR SPECTRA ; NUCLEAR MAGNETIC RESONANCE ; Nuclear Magnetic Resonance, Biomolecular ; ORIGIN ; PROTEIN STRUCTURE ; Research Papers ; rhamnogalacturonan acetylesterase ; short hydrogen bonds ; SIGNALS ; STABILITY</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2008-08, Vol.64 (8), p.851-863</ispartof><rights>Langkilde et al. 2008</rights><rights>Langkilde et al. 2008 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5436-679fb1cfa0ab069efe0d40e9d8c27348d7be65333c17ce2be2704ad160e1b4ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0907444908017083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0907444908017083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18645234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22348015$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Langkilde, Annette</creatorcontrib><creatorcontrib>Kristensen, Søren M.</creatorcontrib><creatorcontrib>Lo Leggio, Leila</creatorcontrib><creatorcontrib>Mølgaard, Anne</creatorcontrib><creatorcontrib>Jensen, Jan H.</creatorcontrib><creatorcontrib>Houk, Andrew R.</creatorcontrib><creatorcontrib>Navarro Poulsen, Jens-Christian</creatorcontrib><creatorcontrib>Kauppinen, Sakari</creatorcontrib><creatorcontrib>Larsen, Sine</creatorcontrib><title>Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Cryst. D</addtitle><description>An extremely low‐field signal (at approximately 18 p.p.m.) in the 1H NMR spectrum of rhamnogalacturonan acetylesterase (RGAE) shows the presence of a short strong hydrogen bond in the structure. This signal was also present in the mutant RGAE D192N, in which Asp192, which is part of the catalytic triad, has been replaced with Asn. A careful analysis of wild‐type RGAE and RGAE D192N was conducted with the purpose of identifying possible candidates for the short hydrogen bond with the 18 p.p.m. deshielded proton. Theoretical calculations of chemical shift values were used in the interpretation of the experimental 1H NMR spectra. The crystal structure of RGAE D192N was determined to 1.33 Å resolution and refined to an R value of 11.6% for all data. The structure is virtually identical to the high‐resolution (1.12 Å) structure of the wild‐type enzyme except for the interactions involving the mutation and a disordered loop. Searches of the Cambridge Structural Database were conducted to obtain information on the donor–acceptor distances of different types of hydrogen bonds. The short hydrogen‐bond interactions found in RGAE have equivalents in small‐molecule structures. An examination of the short hydrogen bonds in RGAE, the calculated pKa values and solvent‐accessibilities identified a buried carboxylic acid carboxylate hydrogen bond between Asp75 and Asp87 as the likely origin of the 18 p.p.m. signal. Similar hydrogen‐bond interactions between two Asp or Glu carboxy groups were found in 16% of a homology‐reduced set of high‐quality structures extracted from the PDB. The shortest hydrogen bonds in RGAE are all located close to the active site and short interactions between Ser and Thr side‐chain OH groups and backbone carbonyl O atoms seem to play an important role in the stability of the protein structure. These results illustrate the significance of short strong hydrogen bonds in proteins.</description><subject>Acetylesterase - chemistry</subject><subject>Acetylesterase - genetics</subject><subject>Amino Acid Substitution</subject><subject>ATOMS</subject><subject>CARBONYLS</subject><subject>CHEMICAL SHIFT</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>CRYSTALS</subject><subject>HYDROGEN</subject><subject>Hydrogen Bonding</subject><subject>INTERACTIONS</subject><subject>low-field NMR signals</subject><subject>Models, Molecular</subject><subject>MOLECULES</subject><subject>NMR SPECTRA</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>ORIGIN</subject><subject>PROTEIN STRUCTURE</subject><subject>Research Papers</subject><subject>rhamnogalacturonan acetylesterase</subject><subject>short hydrogen bonds</subject><subject>SIGNALS</subject><subject>STABILITY</subject><issn>1399-0047</issn><issn>0907-4449</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEoqXwA7ggS0jcAuPYiRMOSFVLF6QKDgVR9mI5zmRjyNpb26HNv8dVVqWIAydb8vee583LsucUXlMK4s0FNCA45w3UQAXU7EF2SFnT5ABcPLx3P8iehPADAIqCicfZAa0rXhaMH2bri8H5SEL0zm7IMHfebdCS1tkuEGPJzruIxoa3RBGtAiZy6mbieuIHtbVuo0al45TUyhKlMc4jhog-oU-zR70aAz7bn0fZ17P3X04-5OefVx9Pjs9zXXJW5ZVo-pbqXoFqoWqwR-g4YNPVuhCM151osSoZY5oKjUWLhQCuOloB0pZrxY6yd4vvbmq32Gm00atR7rzZKj9Lp4z8-8WaQW7cL1nwmvGmSgYvFwMXopFBm4h60M5a1FGmjfG03TJRr_bfeHc1pZBya4LGcVQW3RQkKxPUVHUC6QJq70Lw2N-NQkHe9ib_6S1pXtzP8EexLyoB9QJcmxHn_zvK4--nq8uSFrfx8kVqUjE3d1Llf8pKMFHKb59W8nS9ri7P1isJ7De95LSz</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Langkilde, Annette</creator><creator>Kristensen, Søren M.</creator><creator>Lo Leggio, Leila</creator><creator>Mølgaard, Anne</creator><creator>Jensen, Jan H.</creator><creator>Houk, Andrew R.</creator><creator>Navarro Poulsen, Jens-Christian</creator><creator>Kauppinen, Sakari</creator><creator>Larsen, Sine</creator><general>International Union of Crystallography</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>200808</creationdate><title>Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase</title><author>Langkilde, Annette ; Kristensen, Søren M. ; Lo Leggio, Leila ; Mølgaard, Anne ; Jensen, Jan H. ; Houk, Andrew R. ; Navarro Poulsen, Jens-Christian ; Kauppinen, Sakari ; Larsen, Sine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5436-679fb1cfa0ab069efe0d40e9d8c27348d7be65333c17ce2be2704ad160e1b4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetylesterase - chemistry</topic><topic>Acetylesterase - genetics</topic><topic>Amino Acid Substitution</topic><topic>ATOMS</topic><topic>CARBONYLS</topic><topic>CHEMICAL SHIFT</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>CRYSTALS</topic><topic>HYDROGEN</topic><topic>Hydrogen Bonding</topic><topic>INTERACTIONS</topic><topic>low-field NMR signals</topic><topic>Models, Molecular</topic><topic>MOLECULES</topic><topic>NMR SPECTRA</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>ORIGIN</topic><topic>PROTEIN STRUCTURE</topic><topic>Research Papers</topic><topic>rhamnogalacturonan acetylesterase</topic><topic>short hydrogen bonds</topic><topic>SIGNALS</topic><topic>STABILITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langkilde, Annette</creatorcontrib><creatorcontrib>Kristensen, Søren M.</creatorcontrib><creatorcontrib>Lo Leggio, Leila</creatorcontrib><creatorcontrib>Mølgaard, Anne</creatorcontrib><creatorcontrib>Jensen, Jan H.</creatorcontrib><creatorcontrib>Houk, Andrew R.</creatorcontrib><creatorcontrib>Navarro Poulsen, Jens-Christian</creatorcontrib><creatorcontrib>Kauppinen, Sakari</creatorcontrib><creatorcontrib>Larsen, Sine</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langkilde, Annette</au><au>Kristensen, Søren M.</au><au>Lo Leggio, Leila</au><au>Mølgaard, Anne</au><au>Jensen, Jan H.</au><au>Houk, Andrew R.</au><au>Navarro Poulsen, Jens-Christian</au><au>Kauppinen, Sakari</au><au>Larsen, Sine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Cryst. D</addtitle><date>2008-08</date><risdate>2008</risdate><volume>64</volume><issue>8</issue><spage>851</spage><epage>863</epage><pages>851-863</pages><issn>1399-0047</issn><issn>0907-4449</issn><eissn>1399-0047</eissn><abstract>An extremely low‐field signal (at approximately 18 p.p.m.) in the 1H NMR spectrum of rhamnogalacturonan acetylesterase (RGAE) shows the presence of a short strong hydrogen bond in the structure. This signal was also present in the mutant RGAE D192N, in which Asp192, which is part of the catalytic triad, has been replaced with Asn. A careful analysis of wild‐type RGAE and RGAE D192N was conducted with the purpose of identifying possible candidates for the short hydrogen bond with the 18 p.p.m. deshielded proton. Theoretical calculations of chemical shift values were used in the interpretation of the experimental 1H NMR spectra. The crystal structure of RGAE D192N was determined to 1.33 Å resolution and refined to an R value of 11.6% for all data. The structure is virtually identical to the high‐resolution (1.12 Å) structure of the wild‐type enzyme except for the interactions involving the mutation and a disordered loop. Searches of the Cambridge Structural Database were conducted to obtain information on the donor–acceptor distances of different types of hydrogen bonds. The short hydrogen‐bond interactions found in RGAE have equivalents in small‐molecule structures. An examination of the short hydrogen bonds in RGAE, the calculated pKa values and solvent‐accessibilities identified a buried carboxylic acid carboxylate hydrogen bond between Asp75 and Asp87 as the likely origin of the 18 p.p.m. signal. Similar hydrogen‐bond interactions between two Asp or Glu carboxy groups were found in 16% of a homology‐reduced set of high‐quality structures extracted from the PDB. The shortest hydrogen bonds in RGAE are all located close to the active site and short interactions between Ser and Thr side‐chain OH groups and backbone carbonyl O atoms seem to play an important role in the stability of the protein structure. These results illustrate the significance of short strong hydrogen bonds in proteins.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>18645234</pmid><doi>10.1107/S0907444908017083</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1399-0047
ispartof Acta crystallographica. Section D, Biological crystallography., 2008-08, Vol.64 (8), p.851-863
issn 1399-0047
0907-4449
1399-0047
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2483496
source MEDLINE; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Acetylesterase - chemistry
Acetylesterase - genetics
Amino Acid Substitution
ATOMS
CARBONYLS
CHEMICAL SHIFT
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTAL STRUCTURE
Crystallography, X-Ray
CRYSTALS
HYDROGEN
Hydrogen Bonding
INTERACTIONS
low-field NMR signals
Models, Molecular
MOLECULES
NMR SPECTRA
NUCLEAR MAGNETIC RESONANCE
Nuclear Magnetic Resonance, Biomolecular
ORIGIN
PROTEIN STRUCTURE
Research Papers
rhamnogalacturonan acetylesterase
short hydrogen bonds
SIGNALS
STABILITY
title Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20strong%20hydrogen%20bonds%20in%20proteins:%20a%20case%20study%20of%20rhamnogalacturonan%20acetylesterase&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Langkilde,%20Annette&rft.date=2008-08&rft.volume=64&rft.issue=8&rft.spage=851&rft.epage=863&rft.pages=851-863&rft.issn=1399-0047&rft.eissn=1399-0047&rft_id=info:doi/10.1107/S0907444908017083&rft_dat=%3Cproquest_pubme%3E35153968%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35153968&rft_id=info:pmid/18645234&rfr_iscdi=true