Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line
We previously reported that glutamine was a major source of carbon for de novo fatty acid synthesis in a brown adipocyte cell line. The pathway for fatty acid synthesis from glutamine may follow either of two distinct pathways after it enters the citric acid cycle. The glutaminolysis pathway follows...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2008-07, Vol.283 (30), p.20621-20627 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20627 |
---|---|
container_issue | 30 |
container_start_page | 20621 |
container_title | The Journal of biological chemistry |
container_volume | 283 |
creator | Yoo, Hyuntae Antoniewicz, Maciek R. Stephanopoulos, Gregory Kelleher, Joanne K. |
description | We previously reported that glutamine was a major source of carbon for de novo fatty acid synthesis in a brown adipocyte cell line. The pathway for fatty acid synthesis from glutamine may follow either of two distinct pathways after it enters the citric acid cycle. The glutaminolysis pathway follows the citric acid cycle, whereas the reductive carboxylation pathway travels in reverse of the citric acid cycle from α-ketoglutarate to citrate. To quantify fluxes in these pathways we incubated brown adipocyte cells in [U-13C]glutamine or [5-13C]glutamine and analyzed the mass isotopomer distribution of key metabolites using models that fit the isotopomer distribution to fluxes. We also investigated inhibitors of NADP-dependent isocitrate dehydrogenase and mitochondrial citrate export. The results indicated that one third of glutamine entering the citric acid cycle travels to citrate via reductive carboxylation while the remainder is oxidized through succinate. The reductive carboxylation flux accounted for 90% of all flux of glutamine to lipid. The inhibitor studies were compatible with reductive carboxylation flux through mitochondrial isocitrate dehydrogenase. Total cell citrate and α-ketoglutarate were near isotopic equilibrium as expected if rapid cycling exists between these compounds involving the mitochondrial membrane NAD/NADP transhydrogenase. Taken together, these studies demonstrate a new role for glutamine as a lipogenic precursor and propose an alternative to the glutaminolysis pathway where flux of glutamine to lipogenic acetyl-CoA occurs via reductive carboxylation. These findings were enabled by a new modeling tool and software implementation (Metran) for global flux estimation. |
doi_str_mv | 10.1074/jbc.M706494200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2475696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192581954683X</els_id><sourcerecordid>69330380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-18264b8f6e75556e8f427dbdb9dd2d1024af6521765143f0e041e7c0b5bc7b463</originalsourceid><addsrcrecordid>eNp1kctvEzEQxlcIRNPClSP4gHrbMH7u7gWpRLQgBSEelbggy2vPJq42dvDups1_j6tEFA7MZQ7zm28eX1G8oDCnUIk3N62df6pAiUYwgEfFjELNSy7pj8fFDIDRsmGyPilOh-EGcoiGPi1OaM2V4FLOip9fJhNG3-19WJGv6CY7-h2ShUltvNv3ZvQxkMt-uiOxI1f9NJqND0jGSJZ-6x3xgRjyLsXbQC6c30a7H3M39n2uB3xWPOlMP-DzYz4rri_ff198KJefrz4uLpalVUDHktZMibbuFFZSSoV1J1jlWtc2zjFHgQnTKclopSQVvAMEQbGy0MrWVq1Q_Kx4e9DdTu0GncUwJtPrbfIbk_Y6Gq__rQS_1qu400xUUjX3AudHgRR_TTiMeuMHm88wAeM0aNVwDryGDM4PoE1xGBJ2f4ZQ0PeO6OyIfnAkN7z8e7UH_GhBBl4fgLVfrW99Qt36aNe40azmmoNmoBjN2KsD1pmozSr5QV9_Y0A5QEMVa5pM1AcC86d3HpMerMdg0WVRO2oX_f-W_A2iYq-1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69330380</pqid></control><display><type>article</type><title>Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yoo, Hyuntae ; Antoniewicz, Maciek R. ; Stephanopoulos, Gregory ; Kelleher, Joanne K.</creator><creatorcontrib>Yoo, Hyuntae ; Antoniewicz, Maciek R. ; Stephanopoulos, Gregory ; Kelleher, Joanne K.</creatorcontrib><description>We previously reported that glutamine was a major source of carbon for de novo fatty acid synthesis in a brown adipocyte cell line. The pathway for fatty acid synthesis from glutamine may follow either of two distinct pathways after it enters the citric acid cycle. The glutaminolysis pathway follows the citric acid cycle, whereas the reductive carboxylation pathway travels in reverse of the citric acid cycle from α-ketoglutarate to citrate. To quantify fluxes in these pathways we incubated brown adipocyte cells in [U-13C]glutamine or [5-13C]glutamine and analyzed the mass isotopomer distribution of key metabolites using models that fit the isotopomer distribution to fluxes. We also investigated inhibitors of NADP-dependent isocitrate dehydrogenase and mitochondrial citrate export. The results indicated that one third of glutamine entering the citric acid cycle travels to citrate via reductive carboxylation while the remainder is oxidized through succinate. The reductive carboxylation flux accounted for 90% of all flux of glutamine to lipid. The inhibitor studies were compatible with reductive carboxylation flux through mitochondrial isocitrate dehydrogenase. Total cell citrate and α-ketoglutarate were near isotopic equilibrium as expected if rapid cycling exists between these compounds involving the mitochondrial membrane NAD/NADP transhydrogenase. Taken together, these studies demonstrate a new role for glutamine as a lipogenic precursor and propose an alternative to the glutaminolysis pathway where flux of glutamine to lipogenic acetyl-CoA occurs via reductive carboxylation. These findings were enabled by a new modeling tool and software implementation (Metran) for global flux estimation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M706494200</identifier><identifier>PMID: 18364355</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetyl Coenzyme A - chemistry ; Adipocytes, Brown - cytology ; Animals ; Carboxylic Acids - chemistry ; Cell Differentiation ; Cell Line ; Citric Acid Cycle ; Fatty Acids - chemistry ; Glutamine - chemistry ; Isocitrate Dehydrogenase - chemistry ; Ketoglutaric Acids - chemistry ; Lipids - chemistry ; Metabolism and Bioenergetics ; Mice ; Mitochondria - enzymology ; Oxalates - chemistry</subject><ispartof>The Journal of biological chemistry, 2008-07, Vol.283 (30), p.20621-20627</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-18264b8f6e75556e8f427dbdb9dd2d1024af6521765143f0e041e7c0b5bc7b463</citedby><cites>FETCH-LOGICAL-c601t-18264b8f6e75556e8f427dbdb9dd2d1024af6521765143f0e041e7c0b5bc7b463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475696/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475696/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18364355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, Hyuntae</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R.</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><creatorcontrib>Kelleher, Joanne K.</creatorcontrib><title>Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>We previously reported that glutamine was a major source of carbon for de novo fatty acid synthesis in a brown adipocyte cell line. The pathway for fatty acid synthesis from glutamine may follow either of two distinct pathways after it enters the citric acid cycle. The glutaminolysis pathway follows the citric acid cycle, whereas the reductive carboxylation pathway travels in reverse of the citric acid cycle from α-ketoglutarate to citrate. To quantify fluxes in these pathways we incubated brown adipocyte cells in [U-13C]glutamine or [5-13C]glutamine and analyzed the mass isotopomer distribution of key metabolites using models that fit the isotopomer distribution to fluxes. We also investigated inhibitors of NADP-dependent isocitrate dehydrogenase and mitochondrial citrate export. The results indicated that one third of glutamine entering the citric acid cycle travels to citrate via reductive carboxylation while the remainder is oxidized through succinate. The reductive carboxylation flux accounted for 90% of all flux of glutamine to lipid. The inhibitor studies were compatible with reductive carboxylation flux through mitochondrial isocitrate dehydrogenase. Total cell citrate and α-ketoglutarate were near isotopic equilibrium as expected if rapid cycling exists between these compounds involving the mitochondrial membrane NAD/NADP transhydrogenase. Taken together, these studies demonstrate a new role for glutamine as a lipogenic precursor and propose an alternative to the glutaminolysis pathway where flux of glutamine to lipogenic acetyl-CoA occurs via reductive carboxylation. These findings were enabled by a new modeling tool and software implementation (Metran) for global flux estimation.</description><subject>Acetyl Coenzyme A - chemistry</subject><subject>Adipocytes, Brown - cytology</subject><subject>Animals</subject><subject>Carboxylic Acids - chemistry</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Citric Acid Cycle</subject><subject>Fatty Acids - chemistry</subject><subject>Glutamine - chemistry</subject><subject>Isocitrate Dehydrogenase - chemistry</subject><subject>Ketoglutaric Acids - chemistry</subject><subject>Lipids - chemistry</subject><subject>Metabolism and Bioenergetics</subject><subject>Mice</subject><subject>Mitochondria - enzymology</subject><subject>Oxalates - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctvEzEQxlcIRNPClSP4gHrbMH7u7gWpRLQgBSEelbggy2vPJq42dvDups1_j6tEFA7MZQ7zm28eX1G8oDCnUIk3N62df6pAiUYwgEfFjELNSy7pj8fFDIDRsmGyPilOh-EGcoiGPi1OaM2V4FLOip9fJhNG3-19WJGv6CY7-h2ShUltvNv3ZvQxkMt-uiOxI1f9NJqND0jGSJZ-6x3xgRjyLsXbQC6c30a7H3M39n2uB3xWPOlMP-DzYz4rri_ff198KJefrz4uLpalVUDHktZMibbuFFZSSoV1J1jlWtc2zjFHgQnTKclopSQVvAMEQbGy0MrWVq1Q_Kx4e9DdTu0GncUwJtPrbfIbk_Y6Gq__rQS_1qu400xUUjX3AudHgRR_TTiMeuMHm88wAeM0aNVwDryGDM4PoE1xGBJ2f4ZQ0PeO6OyIfnAkN7z8e7UH_GhBBl4fgLVfrW99Qt36aNe40azmmoNmoBjN2KsD1pmozSr5QV9_Y0A5QEMVa5pM1AcC86d3HpMerMdg0WVRO2oX_f-W_A2iYq-1</recordid><startdate>20080725</startdate><enddate>20080725</enddate><creator>Yoo, Hyuntae</creator><creator>Antoniewicz, Maciek R.</creator><creator>Stephanopoulos, Gregory</creator><creator>Kelleher, Joanne K.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080725</creationdate><title>Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line</title><author>Yoo, Hyuntae ; Antoniewicz, Maciek R. ; Stephanopoulos, Gregory ; Kelleher, Joanne K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-18264b8f6e75556e8f427dbdb9dd2d1024af6521765143f0e041e7c0b5bc7b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetyl Coenzyme A - chemistry</topic><topic>Adipocytes, Brown - cytology</topic><topic>Animals</topic><topic>Carboxylic Acids - chemistry</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Citric Acid Cycle</topic><topic>Fatty Acids - chemistry</topic><topic>Glutamine - chemistry</topic><topic>Isocitrate Dehydrogenase - chemistry</topic><topic>Ketoglutaric Acids - chemistry</topic><topic>Lipids - chemistry</topic><topic>Metabolism and Bioenergetics</topic><topic>Mice</topic><topic>Mitochondria - enzymology</topic><topic>Oxalates - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Hyuntae</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R.</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><creatorcontrib>Kelleher, Joanne K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Hyuntae</au><au>Antoniewicz, Maciek R.</au><au>Stephanopoulos, Gregory</au><au>Kelleher, Joanne K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-07-25</date><risdate>2008</risdate><volume>283</volume><issue>30</issue><spage>20621</spage><epage>20627</epage><pages>20621-20627</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>We previously reported that glutamine was a major source of carbon for de novo fatty acid synthesis in a brown adipocyte cell line. The pathway for fatty acid synthesis from glutamine may follow either of two distinct pathways after it enters the citric acid cycle. The glutaminolysis pathway follows the citric acid cycle, whereas the reductive carboxylation pathway travels in reverse of the citric acid cycle from α-ketoglutarate to citrate. To quantify fluxes in these pathways we incubated brown adipocyte cells in [U-13C]glutamine or [5-13C]glutamine and analyzed the mass isotopomer distribution of key metabolites using models that fit the isotopomer distribution to fluxes. We also investigated inhibitors of NADP-dependent isocitrate dehydrogenase and mitochondrial citrate export. The results indicated that one third of glutamine entering the citric acid cycle travels to citrate via reductive carboxylation while the remainder is oxidized through succinate. The reductive carboxylation flux accounted for 90% of all flux of glutamine to lipid. The inhibitor studies were compatible with reductive carboxylation flux through mitochondrial isocitrate dehydrogenase. Total cell citrate and α-ketoglutarate were near isotopic equilibrium as expected if rapid cycling exists between these compounds involving the mitochondrial membrane NAD/NADP transhydrogenase. Taken together, these studies demonstrate a new role for glutamine as a lipogenic precursor and propose an alternative to the glutaminolysis pathway where flux of glutamine to lipogenic acetyl-CoA occurs via reductive carboxylation. These findings were enabled by a new modeling tool and software implementation (Metran) for global flux estimation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18364355</pmid><doi>10.1074/jbc.M706494200</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2008-07, Vol.283 (30), p.20621-20627 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2475696 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acetyl Coenzyme A - chemistry Adipocytes, Brown - cytology Animals Carboxylic Acids - chemistry Cell Differentiation Cell Line Citric Acid Cycle Fatty Acids - chemistry Glutamine - chemistry Isocitrate Dehydrogenase - chemistry Ketoglutaric Acids - chemistry Lipids - chemistry Metabolism and Bioenergetics Mice Mitochondria - enzymology Oxalates - chemistry |
title | Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Reductive%20Carboxylation%20Flux%20of%20Glutamine%20to%20Lipid%20in%20a%20Brown%20Adipocyte%20Cell%20Line&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yoo,%20Hyuntae&rft.date=2008-07-25&rft.volume=283&rft.issue=30&rft.spage=20621&rft.epage=20627&rft.pages=20621-20627&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M706494200&rft_dat=%3Cproquest_pubme%3E69330380%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69330380&rft_id=info:pmid/18364355&rft_els_id=S002192581954683X&rfr_iscdi=true |