Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA
The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjug...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2008-07, Vol.36 (12), p.3926-3938 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3938 |
---|---|
container_issue | 12 |
container_start_page | 3926 |
container_title | Nucleic acids research |
container_volume | 36 |
creator | Minczuk, Michal Papworth, Monika A Miller, Jeffrey C Murphy, Michael P Klug, Aaron |
description | The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjugated to a zinc-finger peptide (ZFP) engineered to bind a specific DNA sequence, could be useful for the selective degradation of particular mtDNA sequences. Typically, pairs of complementary ZFNs are used that heterodimerize on the target DNA sequence; however, conventional ZFNs were ineffective in our system. To overcome this, we created single-chain ZFNs by conjugating two FokI nuclease domains, connected by a flexible linker, to a ZFP with an N-terminal mitochondrial targeting sequence. Here we show that these ZFNs are efficiently transported into mitochondria in cells and bind mtDNA in a sequence-specific manner discriminating between two 12-bp long sequences that differ by a single base pair. Due to their selective binding they cleave dsDNA at predicted sites adjacent to the mutation. When expressed in heteroplasmic cells containing a mixture of mutated and wt mtDNA these ZFNs selectively degrade mutated mtDNA, thereby increasing the proportion of wt mtDNA molecules in the cell. Therefore, mitochondria-targeted single-chain ZFNs are a promising candidate approach for the treatment of mtDNA diseases. |
doi_str_mv | 10.1093/nar/gkn313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2475635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkn313</oup_id><sourcerecordid>20794402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-caf57865ae1f61491fa24607921e8a0d4d80b2c0eab7ae2b9508d8bffc5093a03</originalsourceid><addsrcrecordid>eNqF0k1v1DAQBuAIgehSuPADwEKCAyLUjj8SX5CqFihoVQ60EuJizTqTXbeJvbWTFXDkl-NqV-XjQE8-zKNXmvFbFI8Zfc2o5gce4sHy0nPG7xQzxlVVCq2qu8WMcipLRkWzVzxI6YJSJpgU94s91kjGhGKz4ucxbrAP6wH9SEJHgCTnlz2WdgXOvyJXEyRXtm7A6Cz54bwtuwwwEj_ZHiEh6UIk4wpJwh7t6DZIWlxGaGF0wV9nDtMII7ZkNQ3gyeDGYFfBt9FBT45PDx8W9zroEz7avfvF-bu3Z0cn5fzT-w9Hh_PSqoqPpYVO1o2SgKxTTGjWQSUUrXXFsAHairahi8pShEUNWC20pE3bLLrOynwkoHy_eLPNXU-LAVubN47Qm3V0A8TvJoAzf0-8W5ll2JhK1FJxmQNe7AJiuJowjWZwyWLfg8cwJaM0p1pycSusGM8_I_XtMK8nBK0yfPYPvAhT9Plc2VCp60azjF5ukY0hpYjdzW6MmuummNwUs21Kxk_-vMZvuqtGBs-3IEzr_weVW-fSiN9uJMRLo2peS3Py5as5m-vThs8_GpX9063vIBhYRpfM-eeKMk6pZoIryn8Bn2fhYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200597891</pqid></control><display><type>article</type><title>Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Minczuk, Michal ; Papworth, Monika A ; Miller, Jeffrey C ; Murphy, Michael P ; Klug, Aaron</creator><creatorcontrib>Minczuk, Michal ; Papworth, Monika A ; Miller, Jeffrey C ; Murphy, Michael P ; Klug, Aaron</creatorcontrib><description>The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjugated to a zinc-finger peptide (ZFP) engineered to bind a specific DNA sequence, could be useful for the selective degradation of particular mtDNA sequences. Typically, pairs of complementary ZFNs are used that heterodimerize on the target DNA sequence; however, conventional ZFNs were ineffective in our system. To overcome this, we created single-chain ZFNs by conjugating two FokI nuclease domains, connected by a flexible linker, to a ZFP with an N-terminal mitochondrial targeting sequence. Here we show that these ZFNs are efficiently transported into mitochondria in cells and bind mtDNA in a sequence-specific manner discriminating between two 12-bp long sequences that differ by a single base pair. Due to their selective binding they cleave dsDNA at predicted sites adjacent to the mutation. When expressed in heteroplasmic cells containing a mixture of mutated and wt mtDNA these ZFNs selectively degrade mutated mtDNA, thereby increasing the proportion of wt mtDNA molecules in the cell. Therefore, mitochondria-targeted single-chain ZFNs are a promising candidate approach for the treatment of mtDNA diseases.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkn313</identifier><identifier>PMID: 18511461</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Line ; Deoxyribonucleases, Type II Site-Specific - chemistry ; Deoxyribonucleases, Type II Site-Specific - genetics ; Deoxyribonucleases, Type II Site-Specific - metabolism ; Dimerization ; DNA, Mitochondrial - chemistry ; DNA, Mitochondrial - metabolism ; Genetic Vectors ; Humans ; Mitochondria - enzymology ; Mitochondrial Diseases - genetics ; Mutation ; Nucleic Acid Enzymes ; Peptides - chemistry ; Point Mutation ; Protein Engineering ; Zinc Fingers</subject><ispartof>Nucleic acids research, 2008-07, Vol.36 (12), p.3926-3938</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-caf57865ae1f61491fa24607921e8a0d4d80b2c0eab7ae2b9508d8bffc5093a03</citedby><cites>FETCH-LOGICAL-c623t-caf57865ae1f61491fa24607921e8a0d4d80b2c0eab7ae2b9508d8bffc5093a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475635/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475635/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18511461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Minczuk, Michal</creatorcontrib><creatorcontrib>Papworth, Monika A</creatorcontrib><creatorcontrib>Miller, Jeffrey C</creatorcontrib><creatorcontrib>Murphy, Michael P</creatorcontrib><creatorcontrib>Klug, Aaron</creatorcontrib><title>Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjugated to a zinc-finger peptide (ZFP) engineered to bind a specific DNA sequence, could be useful for the selective degradation of particular mtDNA sequences. Typically, pairs of complementary ZFNs are used that heterodimerize on the target DNA sequence; however, conventional ZFNs were ineffective in our system. To overcome this, we created single-chain ZFNs by conjugating two FokI nuclease domains, connected by a flexible linker, to a ZFP with an N-terminal mitochondrial targeting sequence. Here we show that these ZFNs are efficiently transported into mitochondria in cells and bind mtDNA in a sequence-specific manner discriminating between two 12-bp long sequences that differ by a single base pair. Due to their selective binding they cleave dsDNA at predicted sites adjacent to the mutation. When expressed in heteroplasmic cells containing a mixture of mutated and wt mtDNA these ZFNs selectively degrade mutated mtDNA, thereby increasing the proportion of wt mtDNA molecules in the cell. Therefore, mitochondria-targeted single-chain ZFNs are a promising candidate approach for the treatment of mtDNA diseases.</description><subject>Cell Line</subject><subject>Deoxyribonucleases, Type II Site-Specific - chemistry</subject><subject>Deoxyribonucleases, Type II Site-Specific - genetics</subject><subject>Deoxyribonucleases, Type II Site-Specific - metabolism</subject><subject>Dimerization</subject><subject>DNA, Mitochondrial - chemistry</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondrial Diseases - genetics</subject><subject>Mutation</subject><subject>Nucleic Acid Enzymes</subject><subject>Peptides - chemistry</subject><subject>Point Mutation</subject><subject>Protein Engineering</subject><subject>Zinc Fingers</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqF0k1v1DAQBuAIgehSuPADwEKCAyLUjj8SX5CqFihoVQ60EuJizTqTXbeJvbWTFXDkl-NqV-XjQE8-zKNXmvFbFI8Zfc2o5gce4sHy0nPG7xQzxlVVCq2qu8WMcipLRkWzVzxI6YJSJpgU94s91kjGhGKz4ucxbrAP6wH9SEJHgCTnlz2WdgXOvyJXEyRXtm7A6Cz54bwtuwwwEj_ZHiEh6UIk4wpJwh7t6DZIWlxGaGF0wV9nDtMII7ZkNQ3gyeDGYFfBt9FBT45PDx8W9zroEz7avfvF-bu3Z0cn5fzT-w9Hh_PSqoqPpYVO1o2SgKxTTGjWQSUUrXXFsAHairahi8pShEUNWC20pE3bLLrOynwkoHy_eLPNXU-LAVubN47Qm3V0A8TvJoAzf0-8W5ll2JhK1FJxmQNe7AJiuJowjWZwyWLfg8cwJaM0p1pycSusGM8_I_XtMK8nBK0yfPYPvAhT9Plc2VCp60azjF5ukY0hpYjdzW6MmuummNwUs21Kxk_-vMZvuqtGBs-3IEzr_weVW-fSiN9uJMRLo2peS3Py5as5m-vThs8_GpX9063vIBhYRpfM-eeKMk6pZoIryn8Bn2fhYQ</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Minczuk, Michal</creator><creator>Papworth, Monika A</creator><creator>Miller, Jeffrey C</creator><creator>Murphy, Michael P</creator><creator>Klug, Aaron</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA</title><author>Minczuk, Michal ; Papworth, Monika A ; Miller, Jeffrey C ; Murphy, Michael P ; Klug, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-caf57865ae1f61491fa24607921e8a0d4d80b2c0eab7ae2b9508d8bffc5093a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cell Line</topic><topic>Deoxyribonucleases, Type II Site-Specific - chemistry</topic><topic>Deoxyribonucleases, Type II Site-Specific - genetics</topic><topic>Deoxyribonucleases, Type II Site-Specific - metabolism</topic><topic>Dimerization</topic><topic>DNA, Mitochondrial - chemistry</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondrial Diseases - genetics</topic><topic>Mutation</topic><topic>Nucleic Acid Enzymes</topic><topic>Peptides - chemistry</topic><topic>Point Mutation</topic><topic>Protein Engineering</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minczuk, Michal</creatorcontrib><creatorcontrib>Papworth, Monika A</creatorcontrib><creatorcontrib>Miller, Jeffrey C</creatorcontrib><creatorcontrib>Murphy, Michael P</creatorcontrib><creatorcontrib>Klug, Aaron</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minczuk, Michal</au><au>Papworth, Monika A</au><au>Miller, Jeffrey C</au><au>Murphy, Michael P</au><au>Klug, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>36</volume><issue>12</issue><spage>3926</spage><epage>3938</epage><pages>3926-3938</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The selective degradation of mutated mitochondrial DNA (mtDNA) molecules is a potential strategy to re-populate cells with wild-type (wt) mtDNA molecules and thereby alleviate the defective mitochondrial function that underlies mtDNA diseases. Zinc finger nucleases (ZFNs), which are nucleases conjugated to a zinc-finger peptide (ZFP) engineered to bind a specific DNA sequence, could be useful for the selective degradation of particular mtDNA sequences. Typically, pairs of complementary ZFNs are used that heterodimerize on the target DNA sequence; however, conventional ZFNs were ineffective in our system. To overcome this, we created single-chain ZFNs by conjugating two FokI nuclease domains, connected by a flexible linker, to a ZFP with an N-terminal mitochondrial targeting sequence. Here we show that these ZFNs are efficiently transported into mitochondria in cells and bind mtDNA in a sequence-specific manner discriminating between two 12-bp long sequences that differ by a single base pair. Due to their selective binding they cleave dsDNA at predicted sites adjacent to the mutation. When expressed in heteroplasmic cells containing a mixture of mutated and wt mtDNA these ZFNs selectively degrade mutated mtDNA, thereby increasing the proportion of wt mtDNA molecules in the cell. Therefore, mitochondria-targeted single-chain ZFNs are a promising candidate approach for the treatment of mtDNA diseases.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18511461</pmid><doi>10.1093/nar/gkn313</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2008-07, Vol.36 (12), p.3926-3938 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2475635 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Cell Line Deoxyribonucleases, Type II Site-Specific - chemistry Deoxyribonucleases, Type II Site-Specific - genetics Deoxyribonucleases, Type II Site-Specific - metabolism Dimerization DNA, Mitochondrial - chemistry DNA, Mitochondrial - metabolism Genetic Vectors Humans Mitochondria - enzymology Mitochondrial Diseases - genetics Mutation Nucleic Acid Enzymes Peptides - chemistry Point Mutation Protein Engineering Zinc Fingers |
title | Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20single-chain,%20quasi-dimeric%20zinc-finger%20nuclease%20for%20the%20selective%20degradation%20of%20mutated%20human%20mitochondrial%20DNA&rft.jtitle=Nucleic%20acids%20research&rft.au=Minczuk,%20Michal&rft.date=2008-07-01&rft.volume=36&rft.issue=12&rft.spage=3926&rft.epage=3938&rft.pages=3926-3938&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkn313&rft_dat=%3Cproquest_pubme%3E20794402%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200597891&rft_id=info:pmid/18511461&rft_oup_id=10.1093/nar/gkn313&rfr_iscdi=true |