Quantifying changes in the thiol redox proteome upon oxidative stress in vivo
Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to ident...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-06, Vol.105 (24), p.8197-8202 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8202 |
---|---|
container_issue | 24 |
container_start_page | 8197 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Leichert, Lars I Gehrke, Florian Gudiseva, Harini V Blackwell, Tom Ilbert, Marianne Walker, Angela K Strahler, John R Andrews, Philip C Jakob, Ursula |
description | Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to identify physiologically important target proteins of hydrogen peroxide (H₂O₂) and hypochlorite (NaOCl) stress in vivo. OxICAT allows the precise quantification of oxidative thiol modifications in hundreds of different proteins in a single experiment. It also identifies the affected proteins and defines their redox-sensitive cysteine(s). Using this technique, we identified a group of Escherichia coli proteins with significantly (30-90%) oxidatively modified thiol groups, which appear to be specifically sensitive to either H₂O₂ or NaOCl stress. These results indicate that individual oxidants target distinct proteins in vivo. Conditionally essential E. coli genes encode one-third of redox-sensitive proteins, a finding that might explain the bacteriostatic effect of oxidative stress treatment. We identified a select group of redox-regulated proteins, which protect E. coli against oxidative stress conditions. These experiments illustrate that OxICAT, which can be used in a variety of different cell types and organisms, is a powerful tool to identify, quantify, and monitor oxidative thiol modifications in vivo. |
doi_str_mv | 10.1073/pnas.0707723105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2448814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25462759</jstor_id><sourcerecordid>25462759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-9806543ae154752a899a18e33ff46a7aeae4bf823f7f7d3086c0f7b74c298ce43</originalsourceid><addsrcrecordid>eNp9kktvEzEUhS0EoqGwZgWMWCA2016_xvYGCVW8pCKEoGvLmdiJo4md2p4o_fd4SNQACxbWXfg75_roGKHnGC4wCHq5DSZfgAAhCMXAH6AZBoXbjil4iGYARLSSEXaGnuS8BgDFJTxGZ1gSKYDADH39PppQvLvzYdn0KxOWNjc-NGVl6_FxaJJdxH2zTbHYuLHNuI2hiXu_MMXvbJNLsvm3Yud38Sl65MyQ7bPjPEc3Hz_8vPrcXn_79OXq_XXbc05KqyR0nFFjMWeCEyOVMlhaSp1jnRHGGsvmThLqhBMLCrLrwYm5YD1RsreMnqN3B9_tON_YRW9DSWbQ2-Q3Jt3paLz--yb4lV7GnSaMSYkngzdHgxRvR5uL3vjc22EwwcYxawKSEAqqgq__AddxTKGGqwymWBHGK3R5gPoUc07W3b8Eg5560lNP-tRTVbz8M8CJPxZTgVdHYFKe7HiNoCVWohJv_09oNw5DsftS0RcHdJ1LTPcs4awjgqvTMmeiNsvks775McWrHwaEkoz-AsvWumM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201319245</pqid></control><display><type>article</type><title>Quantifying changes in the thiol redox proteome upon oxidative stress in vivo</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Leichert, Lars I ; Gehrke, Florian ; Gudiseva, Harini V ; Blackwell, Tom ; Ilbert, Marianne ; Walker, Angela K ; Strahler, John R ; Andrews, Philip C ; Jakob, Ursula</creator><creatorcontrib>Leichert, Lars I ; Gehrke, Florian ; Gudiseva, Harini V ; Blackwell, Tom ; Ilbert, Marianne ; Walker, Angela K ; Strahler, John R ; Andrews, Philip C ; Jakob, Ursula</creatorcontrib><description>Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to identify physiologically important target proteins of hydrogen peroxide (H₂O₂) and hypochlorite (NaOCl) stress in vivo. OxICAT allows the precise quantification of oxidative thiol modifications in hundreds of different proteins in a single experiment. It also identifies the affected proteins and defines their redox-sensitive cysteine(s). Using this technique, we identified a group of Escherichia coli proteins with significantly (30-90%) oxidatively modified thiol groups, which appear to be specifically sensitive to either H₂O₂ or NaOCl stress. These results indicate that individual oxidants target distinct proteins in vivo. Conditionally essential E. coli genes encode one-third of redox-sensitive proteins, a finding that might explain the bacteriostatic effect of oxidative stress treatment. We identified a select group of redox-regulated proteins, which protect E. coli against oxidative stress conditions. These experiments illustrate that OxICAT, which can be used in a variety of different cell types and organisms, is a powerful tool to identify, quantify, and monitor oxidative thiol modifications in vivo.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0707723105</identifier><identifier>PMID: 18287020</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Bacteria ; Biochemistry ; Biological Sciences ; Cell growth ; Disulfides ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Hydrogen bonds ; Hydrogen Peroxide - pharmacology ; Hypochlorite ; Hypochlorous Acid - pharmacology ; Mass Spectrometry - methods ; Oxidation ; Oxidation-Reduction ; Oxidative stress ; Oxidative Stress - genetics ; Oxygen ; Proteins ; Proteome ; Proteomes ; Proteomics ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reactive Oxygen Species Special Feature ; Reagents ; Regulator genes ; Sulfhydryl Compounds - analysis ; Sulfhydryl Compounds - metabolism ; Thiols</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-06, Vol.105 (24), p.8197-8202</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 17, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-9806543ae154752a899a18e33ff46a7aeae4bf823f7f7d3086c0f7b74c298ce43</citedby><cites>FETCH-LOGICAL-c552t-9806543ae154752a899a18e33ff46a7aeae4bf823f7f7d3086c0f7b74c298ce43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25462759$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25462759$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18287020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leichert, Lars I</creatorcontrib><creatorcontrib>Gehrke, Florian</creatorcontrib><creatorcontrib>Gudiseva, Harini V</creatorcontrib><creatorcontrib>Blackwell, Tom</creatorcontrib><creatorcontrib>Ilbert, Marianne</creatorcontrib><creatorcontrib>Walker, Angela K</creatorcontrib><creatorcontrib>Strahler, John R</creatorcontrib><creatorcontrib>Andrews, Philip C</creatorcontrib><creatorcontrib>Jakob, Ursula</creatorcontrib><title>Quantifying changes in the thiol redox proteome upon oxidative stress in vivo</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to identify physiologically important target proteins of hydrogen peroxide (H₂O₂) and hypochlorite (NaOCl) stress in vivo. OxICAT allows the precise quantification of oxidative thiol modifications in hundreds of different proteins in a single experiment. It also identifies the affected proteins and defines their redox-sensitive cysteine(s). Using this technique, we identified a group of Escherichia coli proteins with significantly (30-90%) oxidatively modified thiol groups, which appear to be specifically sensitive to either H₂O₂ or NaOCl stress. These results indicate that individual oxidants target distinct proteins in vivo. Conditionally essential E. coli genes encode one-third of redox-sensitive proteins, a finding that might explain the bacteriostatic effect of oxidative stress treatment. We identified a select group of redox-regulated proteins, which protect E. coli against oxidative stress conditions. These experiments illustrate that OxICAT, which can be used in a variety of different cell types and organisms, is a powerful tool to identify, quantify, and monitor oxidative thiol modifications in vivo.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell growth</subject><subject>Disulfides</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Hydrogen bonds</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Hypochlorite</subject><subject>Hypochlorous Acid - pharmacology</subject><subject>Mass Spectrometry - methods</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>Oxygen</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reactive Oxygen Species Special Feature</subject><subject>Reagents</subject><subject>Regulator genes</subject><subject>Sulfhydryl Compounds - analysis</subject><subject>Sulfhydryl Compounds - metabolism</subject><subject>Thiols</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kktvEzEUhS0EoqGwZgWMWCA2016_xvYGCVW8pCKEoGvLmdiJo4md2p4o_fd4SNQACxbWXfg75_roGKHnGC4wCHq5DSZfgAAhCMXAH6AZBoXbjil4iGYARLSSEXaGnuS8BgDFJTxGZ1gSKYDADH39PppQvLvzYdn0KxOWNjc-NGVl6_FxaJJdxH2zTbHYuLHNuI2hiXu_MMXvbJNLsvm3Yud38Sl65MyQ7bPjPEc3Hz_8vPrcXn_79OXq_XXbc05KqyR0nFFjMWeCEyOVMlhaSp1jnRHGGsvmThLqhBMLCrLrwYm5YD1RsreMnqN3B9_tON_YRW9DSWbQ2-Q3Jt3paLz--yb4lV7GnSaMSYkngzdHgxRvR5uL3vjc22EwwcYxawKSEAqqgq__AddxTKGGqwymWBHGK3R5gPoUc07W3b8Eg5560lNP-tRTVbz8M8CJPxZTgVdHYFKe7HiNoCVWohJv_09oNw5DsftS0RcHdJ1LTPcs4awjgqvTMmeiNsvks775McWrHwaEkoz-AsvWumM</recordid><startdate>20080617</startdate><enddate>20080617</enddate><creator>Leichert, Lars I</creator><creator>Gehrke, Florian</creator><creator>Gudiseva, Harini V</creator><creator>Blackwell, Tom</creator><creator>Ilbert, Marianne</creator><creator>Walker, Angela K</creator><creator>Strahler, John R</creator><creator>Andrews, Philip C</creator><creator>Jakob, Ursula</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20080617</creationdate><title>Quantifying changes in the thiol redox proteome upon oxidative stress in vivo</title><author>Leichert, Lars I ; Gehrke, Florian ; Gudiseva, Harini V ; Blackwell, Tom ; Ilbert, Marianne ; Walker, Angela K ; Strahler, John R ; Andrews, Philip C ; Jakob, Ursula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-9806543ae154752a899a18e33ff46a7aeae4bf823f7f7d3086c0f7b74c298ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell growth</topic><topic>Disulfides</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Hydrogen bonds</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Hypochlorite</topic><topic>Hypochlorous Acid - pharmacology</topic><topic>Mass Spectrometry - methods</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>Oxygen</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reactive Oxygen Species Special Feature</topic><topic>Reagents</topic><topic>Regulator genes</topic><topic>Sulfhydryl Compounds - analysis</topic><topic>Sulfhydryl Compounds - metabolism</topic><topic>Thiols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leichert, Lars I</creatorcontrib><creatorcontrib>Gehrke, Florian</creatorcontrib><creatorcontrib>Gudiseva, Harini V</creatorcontrib><creatorcontrib>Blackwell, Tom</creatorcontrib><creatorcontrib>Ilbert, Marianne</creatorcontrib><creatorcontrib>Walker, Angela K</creatorcontrib><creatorcontrib>Strahler, John R</creatorcontrib><creatorcontrib>Andrews, Philip C</creatorcontrib><creatorcontrib>Jakob, Ursula</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leichert, Lars I</au><au>Gehrke, Florian</au><au>Gudiseva, Harini V</au><au>Blackwell, Tom</au><au>Ilbert, Marianne</au><au>Walker, Angela K</au><au>Strahler, John R</au><au>Andrews, Philip C</au><au>Jakob, Ursula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying changes in the thiol redox proteome upon oxidative stress in vivo</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-06-17</date><risdate>2008</risdate><volume>105</volume><issue>24</issue><spage>8197</spage><epage>8202</epage><pages>8197-8202</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to identify physiologically important target proteins of hydrogen peroxide (H₂O₂) and hypochlorite (NaOCl) stress in vivo. OxICAT allows the precise quantification of oxidative thiol modifications in hundreds of different proteins in a single experiment. It also identifies the affected proteins and defines their redox-sensitive cysteine(s). Using this technique, we identified a group of Escherichia coli proteins with significantly (30-90%) oxidatively modified thiol groups, which appear to be specifically sensitive to either H₂O₂ or NaOCl stress. These results indicate that individual oxidants target distinct proteins in vivo. Conditionally essential E. coli genes encode one-third of redox-sensitive proteins, a finding that might explain the bacteriostatic effect of oxidative stress treatment. We identified a select group of redox-regulated proteins, which protect E. coli against oxidative stress conditions. These experiments illustrate that OxICAT, which can be used in a variety of different cell types and organisms, is a powerful tool to identify, quantify, and monitor oxidative thiol modifications in vivo.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18287020</pmid><doi>10.1073/pnas.0707723105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-06, Vol.105 (24), p.8197-8202 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2448814 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Bacteria Biochemistry Biological Sciences Cell growth Disulfides Escherichia coli Escherichia coli - drug effects Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Hydrogen bonds Hydrogen Peroxide - pharmacology Hypochlorite Hypochlorous Acid - pharmacology Mass Spectrometry - methods Oxidation Oxidation-Reduction Oxidative stress Oxidative Stress - genetics Oxygen Proteins Proteome Proteomes Proteomics Reactive oxygen species Reactive Oxygen Species - metabolism Reactive Oxygen Species Special Feature Reagents Regulator genes Sulfhydryl Compounds - analysis Sulfhydryl Compounds - metabolism Thiols |
title | Quantifying changes in the thiol redox proteome upon oxidative stress in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20changes%20in%20the%20thiol%20redox%20proteome%20upon%20oxidative%20stress%20in%20vivo&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Leichert,%20Lars%20I&rft.date=2008-06-17&rft.volume=105&rft.issue=24&rft.spage=8197&rft.epage=8202&rft.pages=8197-8202&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0707723105&rft_dat=%3Cjstor_pubme%3E25462759%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201319245&rft_id=info:pmid/18287020&rft_jstor_id=25462759&rfr_iscdi=true |