Quantifying changes in the thiol redox proteome upon oxidative stress in vivo

Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to ident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-06, Vol.105 (24), p.8197-8202
Hauptverfasser: Leichert, Lars I, Gehrke, Florian, Gudiseva, Harini V, Blackwell, Tom, Ilbert, Marianne, Walker, Angela K, Strahler, John R, Andrews, Philip C, Jakob, Ursula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8202
container_issue 24
container_start_page 8197
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Leichert, Lars I
Gehrke, Florian
Gudiseva, Harini V
Blackwell, Tom
Ilbert, Marianne
Walker, Angela K
Strahler, John R
Andrews, Philip C
Jakob, Ursula
description Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to identify physiologically important target proteins of hydrogen peroxide (H₂O₂) and hypochlorite (NaOCl) stress in vivo. OxICAT allows the precise quantification of oxidative thiol modifications in hundreds of different proteins in a single experiment. It also identifies the affected proteins and defines their redox-sensitive cysteine(s). Using this technique, we identified a group of Escherichia coli proteins with significantly (30-90%) oxidatively modified thiol groups, which appear to be specifically sensitive to either H₂O₂ or NaOCl stress. These results indicate that individual oxidants target distinct proteins in vivo. Conditionally essential E. coli genes encode one-third of redox-sensitive proteins, a finding that might explain the bacteriostatic effect of oxidative stress treatment. We identified a select group of redox-regulated proteins, which protect E. coli against oxidative stress conditions. These experiments illustrate that OxICAT, which can be used in a variety of different cell types and organisms, is a powerful tool to identify, quantify, and monitor oxidative thiol modifications in vivo.
doi_str_mv 10.1073/pnas.0707723105
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2448814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25462759</jstor_id><sourcerecordid>25462759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-9806543ae154752a899a18e33ff46a7aeae4bf823f7f7d3086c0f7b74c298ce43</originalsourceid><addsrcrecordid>eNp9kktvEzEUhS0EoqGwZgWMWCA2016_xvYGCVW8pCKEoGvLmdiJo4md2p4o_fd4SNQACxbWXfg75_roGKHnGC4wCHq5DSZfgAAhCMXAH6AZBoXbjil4iGYARLSSEXaGnuS8BgDFJTxGZ1gSKYDADH39PppQvLvzYdn0KxOWNjc-NGVl6_FxaJJdxH2zTbHYuLHNuI2hiXu_MMXvbJNLsvm3Yud38Sl65MyQ7bPjPEc3Hz_8vPrcXn_79OXq_XXbc05KqyR0nFFjMWeCEyOVMlhaSp1jnRHGGsvmThLqhBMLCrLrwYm5YD1RsreMnqN3B9_tON_YRW9DSWbQ2-Q3Jt3paLz--yb4lV7GnSaMSYkngzdHgxRvR5uL3vjc22EwwcYxawKSEAqqgq__AddxTKGGqwymWBHGK3R5gPoUc07W3b8Eg5560lNP-tRTVbz8M8CJPxZTgVdHYFKe7HiNoCVWohJv_09oNw5DsftS0RcHdJ1LTPcs4awjgqvTMmeiNsvks775McWrHwaEkoz-AsvWumM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201319245</pqid></control><display><type>article</type><title>Quantifying changes in the thiol redox proteome upon oxidative stress in vivo</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Leichert, Lars I ; Gehrke, Florian ; Gudiseva, Harini V ; Blackwell, Tom ; Ilbert, Marianne ; Walker, Angela K ; Strahler, John R ; Andrews, Philip C ; Jakob, Ursula</creator><creatorcontrib>Leichert, Lars I ; Gehrke, Florian ; Gudiseva, Harini V ; Blackwell, Tom ; Ilbert, Marianne ; Walker, Angela K ; Strahler, John R ; Andrews, Philip C ; Jakob, Ursula</creatorcontrib><description>Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to identify physiologically important target proteins of hydrogen peroxide (H₂O₂) and hypochlorite (NaOCl) stress in vivo. OxICAT allows the precise quantification of oxidative thiol modifications in hundreds of different proteins in a single experiment. It also identifies the affected proteins and defines their redox-sensitive cysteine(s). Using this technique, we identified a group of Escherichia coli proteins with significantly (30-90%) oxidatively modified thiol groups, which appear to be specifically sensitive to either H₂O₂ or NaOCl stress. These results indicate that individual oxidants target distinct proteins in vivo. Conditionally essential E. coli genes encode one-third of redox-sensitive proteins, a finding that might explain the bacteriostatic effect of oxidative stress treatment. We identified a select group of redox-regulated proteins, which protect E. coli against oxidative stress conditions. These experiments illustrate that OxICAT, which can be used in a variety of different cell types and organisms, is a powerful tool to identify, quantify, and monitor oxidative thiol modifications in vivo.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0707723105</identifier><identifier>PMID: 18287020</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Bacteria ; Biochemistry ; Biological Sciences ; Cell growth ; Disulfides ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Hydrogen bonds ; Hydrogen Peroxide - pharmacology ; Hypochlorite ; Hypochlorous Acid - pharmacology ; Mass Spectrometry - methods ; Oxidation ; Oxidation-Reduction ; Oxidative stress ; Oxidative Stress - genetics ; Oxygen ; Proteins ; Proteome ; Proteomes ; Proteomics ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reactive Oxygen Species Special Feature ; Reagents ; Regulator genes ; Sulfhydryl Compounds - analysis ; Sulfhydryl Compounds - metabolism ; Thiols</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-06, Vol.105 (24), p.8197-8202</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 17, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-9806543ae154752a899a18e33ff46a7aeae4bf823f7f7d3086c0f7b74c298ce43</citedby><cites>FETCH-LOGICAL-c552t-9806543ae154752a899a18e33ff46a7aeae4bf823f7f7d3086c0f7b74c298ce43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25462759$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25462759$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18287020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leichert, Lars I</creatorcontrib><creatorcontrib>Gehrke, Florian</creatorcontrib><creatorcontrib>Gudiseva, Harini V</creatorcontrib><creatorcontrib>Blackwell, Tom</creatorcontrib><creatorcontrib>Ilbert, Marianne</creatorcontrib><creatorcontrib>Walker, Angela K</creatorcontrib><creatorcontrib>Strahler, John R</creatorcontrib><creatorcontrib>Andrews, Philip C</creatorcontrib><creatorcontrib>Jakob, Ursula</creatorcontrib><title>Quantifying changes in the thiol redox proteome upon oxidative stress in vivo</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to identify physiologically important target proteins of hydrogen peroxide (H₂O₂) and hypochlorite (NaOCl) stress in vivo. OxICAT allows the precise quantification of oxidative thiol modifications in hundreds of different proteins in a single experiment. It also identifies the affected proteins and defines their redox-sensitive cysteine(s). Using this technique, we identified a group of Escherichia coli proteins with significantly (30-90%) oxidatively modified thiol groups, which appear to be specifically sensitive to either H₂O₂ or NaOCl stress. These results indicate that individual oxidants target distinct proteins in vivo. Conditionally essential E. coli genes encode one-third of redox-sensitive proteins, a finding that might explain the bacteriostatic effect of oxidative stress treatment. We identified a select group of redox-regulated proteins, which protect E. coli against oxidative stress conditions. These experiments illustrate that OxICAT, which can be used in a variety of different cell types and organisms, is a powerful tool to identify, quantify, and monitor oxidative thiol modifications in vivo.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell growth</subject><subject>Disulfides</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Hydrogen bonds</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Hypochlorite</subject><subject>Hypochlorous Acid - pharmacology</subject><subject>Mass Spectrometry - methods</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>Oxygen</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reactive Oxygen Species Special Feature</subject><subject>Reagents</subject><subject>Regulator genes</subject><subject>Sulfhydryl Compounds - analysis</subject><subject>Sulfhydryl Compounds - metabolism</subject><subject>Thiols</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kktvEzEUhS0EoqGwZgWMWCA2016_xvYGCVW8pCKEoGvLmdiJo4md2p4o_fd4SNQACxbWXfg75_roGKHnGC4wCHq5DSZfgAAhCMXAH6AZBoXbjil4iGYARLSSEXaGnuS8BgDFJTxGZ1gSKYDADH39PppQvLvzYdn0KxOWNjc-NGVl6_FxaJJdxH2zTbHYuLHNuI2hiXu_MMXvbJNLsvm3Yud38Sl65MyQ7bPjPEc3Hz_8vPrcXn_79OXq_XXbc05KqyR0nFFjMWeCEyOVMlhaSp1jnRHGGsvmThLqhBMLCrLrwYm5YD1RsreMnqN3B9_tON_YRW9DSWbQ2-Q3Jt3paLz--yb4lV7GnSaMSYkngzdHgxRvR5uL3vjc22EwwcYxawKSEAqqgq__AddxTKGGqwymWBHGK3R5gPoUc07W3b8Eg5560lNP-tRTVbz8M8CJPxZTgVdHYFKe7HiNoCVWohJv_09oNw5DsftS0RcHdJ1LTPcs4awjgqvTMmeiNsvks775McWrHwaEkoz-AsvWumM</recordid><startdate>20080617</startdate><enddate>20080617</enddate><creator>Leichert, Lars I</creator><creator>Gehrke, Florian</creator><creator>Gudiseva, Harini V</creator><creator>Blackwell, Tom</creator><creator>Ilbert, Marianne</creator><creator>Walker, Angela K</creator><creator>Strahler, John R</creator><creator>Andrews, Philip C</creator><creator>Jakob, Ursula</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20080617</creationdate><title>Quantifying changes in the thiol redox proteome upon oxidative stress in vivo</title><author>Leichert, Lars I ; Gehrke, Florian ; Gudiseva, Harini V ; Blackwell, Tom ; Ilbert, Marianne ; Walker, Angela K ; Strahler, John R ; Andrews, Philip C ; Jakob, Ursula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-9806543ae154752a899a18e33ff46a7aeae4bf823f7f7d3086c0f7b74c298ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell growth</topic><topic>Disulfides</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Hydrogen bonds</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Hypochlorite</topic><topic>Hypochlorous Acid - pharmacology</topic><topic>Mass Spectrometry - methods</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>Oxygen</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reactive Oxygen Species Special Feature</topic><topic>Reagents</topic><topic>Regulator genes</topic><topic>Sulfhydryl Compounds - analysis</topic><topic>Sulfhydryl Compounds - metabolism</topic><topic>Thiols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leichert, Lars I</creatorcontrib><creatorcontrib>Gehrke, Florian</creatorcontrib><creatorcontrib>Gudiseva, Harini V</creatorcontrib><creatorcontrib>Blackwell, Tom</creatorcontrib><creatorcontrib>Ilbert, Marianne</creatorcontrib><creatorcontrib>Walker, Angela K</creatorcontrib><creatorcontrib>Strahler, John R</creatorcontrib><creatorcontrib>Andrews, Philip C</creatorcontrib><creatorcontrib>Jakob, Ursula</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leichert, Lars I</au><au>Gehrke, Florian</au><au>Gudiseva, Harini V</au><au>Blackwell, Tom</au><au>Ilbert, Marianne</au><au>Walker, Angela K</au><au>Strahler, John R</au><au>Andrews, Philip C</au><au>Jakob, Ursula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying changes in the thiol redox proteome upon oxidative stress in vivo</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-06-17</date><risdate>2008</risdate><volume>105</volume><issue>24</issue><spage>8197</spage><epage>8202</epage><pages>8197-8202</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Antimicrobial levels of reactive oxygen species (ROS) are produced by the mammalian host defense to kill invading bacteria and limit bacterial colonization. One main in vivo target of ROS is the thiol group of proteins. We have developed a quantitative thiol trapping technique termed OxICAT to identify physiologically important target proteins of hydrogen peroxide (H₂O₂) and hypochlorite (NaOCl) stress in vivo. OxICAT allows the precise quantification of oxidative thiol modifications in hundreds of different proteins in a single experiment. It also identifies the affected proteins and defines their redox-sensitive cysteine(s). Using this technique, we identified a group of Escherichia coli proteins with significantly (30-90%) oxidatively modified thiol groups, which appear to be specifically sensitive to either H₂O₂ or NaOCl stress. These results indicate that individual oxidants target distinct proteins in vivo. Conditionally essential E. coli genes encode one-third of redox-sensitive proteins, a finding that might explain the bacteriostatic effect of oxidative stress treatment. We identified a select group of redox-regulated proteins, which protect E. coli against oxidative stress conditions. These experiments illustrate that OxICAT, which can be used in a variety of different cell types and organisms, is a powerful tool to identify, quantify, and monitor oxidative thiol modifications in vivo.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18287020</pmid><doi>10.1073/pnas.0707723105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-06, Vol.105 (24), p.8197-8202
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2448814
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Bacteria
Biochemistry
Biological Sciences
Cell growth
Disulfides
Escherichia coli
Escherichia coli - drug effects
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Hydrogen bonds
Hydrogen Peroxide - pharmacology
Hypochlorite
Hypochlorous Acid - pharmacology
Mass Spectrometry - methods
Oxidation
Oxidation-Reduction
Oxidative stress
Oxidative Stress - genetics
Oxygen
Proteins
Proteome
Proteomes
Proteomics
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reactive Oxygen Species Special Feature
Reagents
Regulator genes
Sulfhydryl Compounds - analysis
Sulfhydryl Compounds - metabolism
Thiols
title Quantifying changes in the thiol redox proteome upon oxidative stress in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20changes%20in%20the%20thiol%20redox%20proteome%20upon%20oxidative%20stress%20in%20vivo&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Leichert,%20Lars%20I&rft.date=2008-06-17&rft.volume=105&rft.issue=24&rft.spage=8197&rft.epage=8202&rft.pages=8197-8202&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0707723105&rft_dat=%3Cjstor_pubme%3E25462759%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201319245&rft_id=info:pmid/18287020&rft_jstor_id=25462759&rfr_iscdi=true