Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria

Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2008-07, Vol.74 (13), p.4044-4053
Hauptverfasser: Kellmann, Ralf, Mihali, Troco Kaan, Jeon, Young Jae, Pickford, Russell, Pomati, Francesco, Neilan, Brett A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4053
container_issue 13
container_start_page 4044
container_title Applied and Environmental Microbiology
container_volume 74
creator Kellmann, Ralf
Mihali, Troco Kaan
Jeon, Young Jae
Pickford, Russell
Pomati, Francesco
Neilan, Brett A
description Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.
doi_str_mv 10.1128/AEM.00353-08
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2446512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21503397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-2980ca7bc9f28239a4490a98d6fcc75c3efb82786b758e1bf427884e442f1e223</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSNERYfCjjVESLAi5fqRsb1BGkZ9SUVIlK6tG48z45LYrZ2U5t_jMqO2sLKO76ejY59bFG8IHBJC5efF0bdDAFazCuSzYkZAyapmbP68mAEoVVHKYb94mdIVAHCYyxfFPpFcCg5yVvz66kKa_LCxgzPlmR9s7O3K4WDLhcduSi6V6Ffl8ejN4EK-Kk9DH7qwnsof9tZmjeUF3rkh3Dlfnlhvy2U3puxTZr2c0IcGTZYOXxV7LXbJvt6dB8Xl8dHP5Wl1_v3kbLk4r0wtxVBRJcGgaIxqqaRMIecKUMnVvDVG1IbZtpFUyHkjamlJ0_IsJLec05ZYStlB8WXrez02-THG-iFip6-j6zFOOqDT_0682-h1uNWU83lN7g0-7gxiuBltGnTvkrFdh96GMWlKamBMiQy-_w-8CmPMn5QZqJUATiBDn7aQiSGlaNuHJAT0fYU6V6j_VqhBZvzt0_SP8K6zDHzYAZgMdm1Eb1x64ChwxQUlj-E2br357aLVmHqNtteCa8I0B84z9G4LtRg0rmM2urygQFjeHVBCcvYHIsu5Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205970410</pqid></control><display><type>article</type><title>Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kellmann, Ralf ; Mihali, Troco Kaan ; Jeon, Young Jae ; Pickford, Russell ; Pomati, Francesco ; Neilan, Brett A</creator><creatorcontrib>Kellmann, Ralf ; Mihali, Troco Kaan ; Jeon, Young Jae ; Pickford, Russell ; Pomati, Francesco ; Neilan, Brett A</creatorcontrib><description>Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.00353-08</identifier><identifier>PMID: 18487408</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Acetic acid ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Chemical synthesis ; Culture Media - chemistry ; Cyanobacteria ; Cyanobacteria - classification ; Cyanobacteria - enzymology ; Cyanobacteria - genetics ; Cyanobacteria - growth &amp; development ; Enzymology and Protein Engineering ; Eukaryotes ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Genes ; Marine Toxins - biosynthesis ; Marine Toxins - genetics ; Mass Spectrometry ; Microbiology ; Molecular Sequence Data ; Multigene Family ; Phylogeny ; Proteins ; Saxitoxin - biosynthesis ; Saxitoxin - genetics ; Sequence Analysis, DNA ; Shellfish ; Toxins</subject><ispartof>Applied and Environmental Microbiology, 2008-07, Vol.74 (13), p.4044-4053</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jul 2008</rights><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-2980ca7bc9f28239a4490a98d6fcc75c3efb82786b758e1bf427884e442f1e223</citedby><cites>FETCH-LOGICAL-c587t-2980ca7bc9f28239a4490a98d6fcc75c3efb82786b758e1bf427884e442f1e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2446512/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2446512/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3186,3187,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20494721$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18487408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kellmann, Ralf</creatorcontrib><creatorcontrib>Mihali, Troco Kaan</creatorcontrib><creatorcontrib>Jeon, Young Jae</creatorcontrib><creatorcontrib>Pickford, Russell</creatorcontrib><creatorcontrib>Pomati, Francesco</creatorcontrib><creatorcontrib>Neilan, Brett A</creatorcontrib><title>Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.</description><subject>Acetic acid</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Chemical synthesis</subject><subject>Culture Media - chemistry</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - classification</subject><subject>Cyanobacteria - enzymology</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - growth &amp; development</subject><subject>Enzymology and Protein Engineering</subject><subject>Eukaryotes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Marine Toxins - biosynthesis</subject><subject>Marine Toxins - genetics</subject><subject>Mass Spectrometry</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Saxitoxin - biosynthesis</subject><subject>Saxitoxin - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Shellfish</subject><subject>Toxins</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkktv1DAUhSNERYfCjjVESLAi5fqRsb1BGkZ9SUVIlK6tG48z45LYrZ2U5t_jMqO2sLKO76ejY59bFG8IHBJC5efF0bdDAFazCuSzYkZAyapmbP68mAEoVVHKYb94mdIVAHCYyxfFPpFcCg5yVvz66kKa_LCxgzPlmR9s7O3K4WDLhcduSi6V6Ffl8ejN4EK-Kk9DH7qwnsof9tZmjeUF3rkh3Dlfnlhvy2U3puxTZr2c0IcGTZYOXxV7LXbJvt6dB8Xl8dHP5Wl1_v3kbLk4r0wtxVBRJcGgaIxqqaRMIecKUMnVvDVG1IbZtpFUyHkjamlJ0_IsJLec05ZYStlB8WXrez02-THG-iFip6-j6zFOOqDT_0682-h1uNWU83lN7g0-7gxiuBltGnTvkrFdh96GMWlKamBMiQy-_w-8CmPMn5QZqJUATiBDn7aQiSGlaNuHJAT0fYU6V6j_VqhBZvzt0_SP8K6zDHzYAZgMdm1Eb1x64ChwxQUlj-E2br357aLVmHqNtteCa8I0B84z9G4LtRg0rmM2urygQFjeHVBCcvYHIsu5Sw</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Kellmann, Ralf</creator><creator>Mihali, Troco Kaan</creator><creator>Jeon, Young Jae</creator><creator>Pickford, Russell</creator><creator>Pomati, Francesco</creator><creator>Neilan, Brett A</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>F1W</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria</title><author>Kellmann, Ralf ; Mihali, Troco Kaan ; Jeon, Young Jae ; Pickford, Russell ; Pomati, Francesco ; Neilan, Brett A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-2980ca7bc9f28239a4490a98d6fcc75c3efb82786b758e1bf427884e442f1e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetic acid</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Chemical synthesis</topic><topic>Culture Media - chemistry</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - classification</topic><topic>Cyanobacteria - enzymology</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - growth &amp; development</topic><topic>Enzymology and Protein Engineering</topic><topic>Eukaryotes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Marine Toxins - biosynthesis</topic><topic>Marine Toxins - genetics</topic><topic>Mass Spectrometry</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Saxitoxin - biosynthesis</topic><topic>Saxitoxin - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Shellfish</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellmann, Ralf</creatorcontrib><creatorcontrib>Mihali, Troco Kaan</creatorcontrib><creatorcontrib>Jeon, Young Jae</creatorcontrib><creatorcontrib>Pickford, Russell</creatorcontrib><creatorcontrib>Pomati, Francesco</creatorcontrib><creatorcontrib>Neilan, Brett A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellmann, Ralf</au><au>Mihali, Troco Kaan</au><au>Jeon, Young Jae</au><au>Pickford, Russell</au><au>Pomati, Francesco</au><au>Neilan, Brett A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>74</volume><issue>13</issue><spage>4044</spage><epage>4053</epage><pages>4044-4053</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18487408</pmid><doi>10.1128/AEM.00353-08</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2008-07, Vol.74 (13), p.4044-4053
issn 0099-2240
1098-5336
1098-6596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2446512
source American Society for Microbiology; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acetic acid
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological and medical sciences
Chemical synthesis
Culture Media - chemistry
Cyanobacteria
Cyanobacteria - classification
Cyanobacteria - enzymology
Cyanobacteria - genetics
Cyanobacteria - growth & development
Enzymology and Protein Engineering
Eukaryotes
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Genes
Marine Toxins - biosynthesis
Marine Toxins - genetics
Mass Spectrometry
Microbiology
Molecular Sequence Data
Multigene Family
Phylogeny
Proteins
Saxitoxin - biosynthesis
Saxitoxin - genetics
Sequence Analysis, DNA
Shellfish
Toxins
title Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthetic%20Intermediate%20Analysis%20and%20Functional%20Homology%20Reveal%20a%20Saxitoxin%20Gene%20Cluster%20in%20Cyanobacteria&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Kellmann,%20Ralf&rft.date=2008-07-01&rft.volume=74&rft.issue=13&rft.spage=4044&rft.epage=4053&rft.pages=4044-4053&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.00353-08&rft_dat=%3Cproquest_pubme%3E21503397%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205970410&rft_id=info:pmid/18487408&rfr_iscdi=true