Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria
Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynth...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2008-07, Vol.74 (13), p.4044-4053 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4053 |
---|---|
container_issue | 13 |
container_start_page | 4044 |
container_title | Applied and Environmental Microbiology |
container_volume | 74 |
creator | Kellmann, Ralf Mihali, Troco Kaan Jeon, Young Jae Pickford, Russell Pomati, Francesco Neilan, Brett A |
description | Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria. |
doi_str_mv | 10.1128/AEM.00353-08 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2446512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21503397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-2980ca7bc9f28239a4490a98d6fcc75c3efb82786b758e1bf427884e442f1e223</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSNERYfCjjVESLAi5fqRsb1BGkZ9SUVIlK6tG48z45LYrZ2U5t_jMqO2sLKO76ejY59bFG8IHBJC5efF0bdDAFazCuSzYkZAyapmbP68mAEoVVHKYb94mdIVAHCYyxfFPpFcCg5yVvz66kKa_LCxgzPlmR9s7O3K4WDLhcduSi6V6Ffl8ejN4EK-Kk9DH7qwnsof9tZmjeUF3rkh3Dlfnlhvy2U3puxTZr2c0IcGTZYOXxV7LXbJvt6dB8Xl8dHP5Wl1_v3kbLk4r0wtxVBRJcGgaIxqqaRMIecKUMnVvDVG1IbZtpFUyHkjamlJ0_IsJLec05ZYStlB8WXrez02-THG-iFip6-j6zFOOqDT_0682-h1uNWU83lN7g0-7gxiuBltGnTvkrFdh96GMWlKamBMiQy-_w-8CmPMn5QZqJUATiBDn7aQiSGlaNuHJAT0fYU6V6j_VqhBZvzt0_SP8K6zDHzYAZgMdm1Eb1x64ChwxQUlj-E2br357aLVmHqNtteCa8I0B84z9G4LtRg0rmM2urygQFjeHVBCcvYHIsu5Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205970410</pqid></control><display><type>article</type><title>Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kellmann, Ralf ; Mihali, Troco Kaan ; Jeon, Young Jae ; Pickford, Russell ; Pomati, Francesco ; Neilan, Brett A</creator><creatorcontrib>Kellmann, Ralf ; Mihali, Troco Kaan ; Jeon, Young Jae ; Pickford, Russell ; Pomati, Francesco ; Neilan, Brett A</creatorcontrib><description>Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AEM.00353-08</identifier><identifier>PMID: 18487408</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Acetic acid ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Chemical synthesis ; Culture Media - chemistry ; Cyanobacteria ; Cyanobacteria - classification ; Cyanobacteria - enzymology ; Cyanobacteria - genetics ; Cyanobacteria - growth & development ; Enzymology and Protein Engineering ; Eukaryotes ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Genes ; Marine Toxins - biosynthesis ; Marine Toxins - genetics ; Mass Spectrometry ; Microbiology ; Molecular Sequence Data ; Multigene Family ; Phylogeny ; Proteins ; Saxitoxin - biosynthesis ; Saxitoxin - genetics ; Sequence Analysis, DNA ; Shellfish ; Toxins</subject><ispartof>Applied and Environmental Microbiology, 2008-07, Vol.74 (13), p.4044-4053</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jul 2008</rights><rights>Copyright © 2008, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-2980ca7bc9f28239a4490a98d6fcc75c3efb82786b758e1bf427884e442f1e223</citedby><cites>FETCH-LOGICAL-c587t-2980ca7bc9f28239a4490a98d6fcc75c3efb82786b758e1bf427884e442f1e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2446512/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2446512/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3186,3187,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20494721$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18487408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kellmann, Ralf</creatorcontrib><creatorcontrib>Mihali, Troco Kaan</creatorcontrib><creatorcontrib>Jeon, Young Jae</creatorcontrib><creatorcontrib>Pickford, Russell</creatorcontrib><creatorcontrib>Pomati, Francesco</creatorcontrib><creatorcontrib>Neilan, Brett A</creatorcontrib><title>Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.</description><subject>Acetic acid</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Chemical synthesis</subject><subject>Culture Media - chemistry</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - classification</subject><subject>Cyanobacteria - enzymology</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - growth & development</subject><subject>Enzymology and Protein Engineering</subject><subject>Eukaryotes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Marine Toxins - biosynthesis</subject><subject>Marine Toxins - genetics</subject><subject>Mass Spectrometry</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Saxitoxin - biosynthesis</subject><subject>Saxitoxin - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Shellfish</subject><subject>Toxins</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkktv1DAUhSNERYfCjjVESLAi5fqRsb1BGkZ9SUVIlK6tG48z45LYrZ2U5t_jMqO2sLKO76ejY59bFG8IHBJC5efF0bdDAFazCuSzYkZAyapmbP68mAEoVVHKYb94mdIVAHCYyxfFPpFcCg5yVvz66kKa_LCxgzPlmR9s7O3K4WDLhcduSi6V6Ffl8ejN4EK-Kk9DH7qwnsof9tZmjeUF3rkh3Dlfnlhvy2U3puxTZr2c0IcGTZYOXxV7LXbJvt6dB8Xl8dHP5Wl1_v3kbLk4r0wtxVBRJcGgaIxqqaRMIecKUMnVvDVG1IbZtpFUyHkjamlJ0_IsJLec05ZYStlB8WXrez02-THG-iFip6-j6zFOOqDT_0682-h1uNWU83lN7g0-7gxiuBltGnTvkrFdh96GMWlKamBMiQy-_w-8CmPMn5QZqJUATiBDn7aQiSGlaNuHJAT0fYU6V6j_VqhBZvzt0_SP8K6zDHzYAZgMdm1Eb1x64ChwxQUlj-E2br357aLVmHqNtteCa8I0B84z9G4LtRg0rmM2urygQFjeHVBCcvYHIsu5Sw</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Kellmann, Ralf</creator><creator>Mihali, Troco Kaan</creator><creator>Jeon, Young Jae</creator><creator>Pickford, Russell</creator><creator>Pomati, Francesco</creator><creator>Neilan, Brett A</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>F1W</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria</title><author>Kellmann, Ralf ; Mihali, Troco Kaan ; Jeon, Young Jae ; Pickford, Russell ; Pomati, Francesco ; Neilan, Brett A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-2980ca7bc9f28239a4490a98d6fcc75c3efb82786b758e1bf427884e442f1e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetic acid</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Chemical synthesis</topic><topic>Culture Media - chemistry</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - classification</topic><topic>Cyanobacteria - enzymology</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - growth & development</topic><topic>Enzymology and Protein Engineering</topic><topic>Eukaryotes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Marine Toxins - biosynthesis</topic><topic>Marine Toxins - genetics</topic><topic>Mass Spectrometry</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Saxitoxin - biosynthesis</topic><topic>Saxitoxin - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Shellfish</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellmann, Ralf</creatorcontrib><creatorcontrib>Mihali, Troco Kaan</creatorcontrib><creatorcontrib>Jeon, Young Jae</creatorcontrib><creatorcontrib>Pickford, Russell</creatorcontrib><creatorcontrib>Pomati, Francesco</creatorcontrib><creatorcontrib>Neilan, Brett A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellmann, Ralf</au><au>Mihali, Troco Kaan</au><au>Jeon, Young Jae</au><au>Pickford, Russell</au><au>Pomati, Francesco</au><au>Neilan, Brett A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>74</volume><issue>13</issue><spage>4044</spage><epage>4053</epage><pages>4044-4053</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><eissn>1098-6596</eissn><coden>AEMIDF</coden><abstract>Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>18487408</pmid><doi>10.1128/AEM.00353-08</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2008-07, Vol.74 (13), p.4044-4053 |
issn | 0099-2240 1098-5336 1098-6596 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2446512 |
source | American Society for Microbiology; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acetic acid Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological and medical sciences Chemical synthesis Culture Media - chemistry Cyanobacteria Cyanobacteria - classification Cyanobacteria - enzymology Cyanobacteria - genetics Cyanobacteria - growth & development Enzymology and Protein Engineering Eukaryotes Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial Genes Marine Toxins - biosynthesis Marine Toxins - genetics Mass Spectrometry Microbiology Molecular Sequence Data Multigene Family Phylogeny Proteins Saxitoxin - biosynthesis Saxitoxin - genetics Sequence Analysis, DNA Shellfish Toxins |
title | Biosynthetic Intermediate Analysis and Functional Homology Reveal a Saxitoxin Gene Cluster in Cyanobacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthetic%20Intermediate%20Analysis%20and%20Functional%20Homology%20Reveal%20a%20Saxitoxin%20Gene%20Cluster%20in%20Cyanobacteria&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Kellmann,%20Ralf&rft.date=2008-07-01&rft.volume=74&rft.issue=13&rft.spage=4044&rft.epage=4053&rft.pages=4044-4053&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.00353-08&rft_dat=%3Cproquest_pubme%3E21503397%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205970410&rft_id=info:pmid/18487408&rfr_iscdi=true |