The dynamics of secretion during sea urchin embryonic skeleton formation

Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 2008-05, Vol.314 (8), p.1744-1752
Hauptverfasser: Wilt, Fred H., Killian, Christopher E., Hamilton, Patricia, Croker, Lindsay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1752
container_issue 8
container_start_page 1744
container_title Experimental cell research
container_volume 314
creator Wilt, Fred H.
Killian, Christopher E.
Hamilton, Patricia
Croker, Lindsay
description Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.
doi_str_mv 10.1016/j.yexcr.2008.01.036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2444014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482708000700</els_id><sourcerecordid>69155660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-e839eb953c8160b22e2f8a42503f3c89c6a1ccdb0abc092b5dfd7aee340af3633</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhFyChCCRuCeOPJM4BJFQBRarEpZwtZzLpetnYxU4q9t_jsCu-DnCyNH7mnZn3Zewph4oDb17tqgN9w1gJAF0Br0A299iGQwelUELcZxsArkqlRXvGHqW0gwxq3jxkZ1zLutagN-zyekvFcPB2cpiKMBaJMNLsgi-GJTp_kwu2WCJunS9o6uMheIdF-kJ7mjM0hjjZFX_MHox2n-jJ6T1nn9-_u764LK8-ffh48faqxFrJuSQtO-q7WmLeBHohSIzaKlGDHHOtw8ZyxKEH2yN0oq-HcWgtkVRgR9lIec7eHHVvl36iAcnP0e7NbXSTjQcTrDN__ni3NTfhzgilVPYjC7w4CoQ0O5PQzYRbDN4TzkZwLjRvdaZensbE8HWhNJvJJaT93noKSzJNx-u6aeC_oACheNuuc5__Be7CEn32yvBONW3W6jIkjxDGkFKk8edhHMyautmZH6mbNXUD3OTUc9ez3z351XOKOQOvjwDlZO4cxfVu8kiDi-vZQ3D_HPAdEm6_6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194676039</pqid></control><display><type>article</type><title>The dynamics of secretion during sea urchin embryonic skeleton formation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wilt, Fred H. ; Killian, Christopher E. ; Hamilton, Patricia ; Croker, Lindsay</creator><creatorcontrib>Wilt, Fred H. ; Killian, Christopher E. ; Hamilton, Patricia ; Croker, Lindsay</creatorcontrib><description>Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1016/j.yexcr.2008.01.036</identifier><identifier>PMID: 18355808</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Animals ; Biomineralization ; Calcein ; Calcification, Physiologic ; CALCIUM ; Calcium - metabolism ; Cellular biology ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Cytoskeletal Proteins - secretion ; Echinoidea ; ELECTRON MICROSCOPY ; EMBRYOS ; Endoskeleton ; Extracellular Matrix Proteins - genetics ; Extracellular Matrix Proteins - metabolism ; Green Fluorescent Proteins - genetics ; LABELLING ; Marine ; Marine biology ; Minerals ; PROTEINS ; Recombinant Fusion Proteins - analysis ; Sea urchin ; SEA URCHINS ; SECRETION ; Skeletal system ; SKELETON ; Spicule ; Strongylocentrotus purpuratus - cytology ; Strongylocentrotus purpuratus - embryology ; Strongylocentrotus purpuratus - metabolism</subject><ispartof>Experimental cell research, 2008-05, Vol.314 (8), p.1744-1752</ispartof><rights>2008 Elsevier Inc.</rights><rights>Copyright © 2008 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-e839eb953c8160b22e2f8a42503f3c89c6a1ccdb0abc092b5dfd7aee340af3633</citedby><cites>FETCH-LOGICAL-c543t-e839eb953c8160b22e2f8a42503f3c89c6a1ccdb0abc092b5dfd7aee340af3633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.yexcr.2008.01.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18355808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21128178$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilt, Fred H.</creatorcontrib><creatorcontrib>Killian, Christopher E.</creatorcontrib><creatorcontrib>Hamilton, Patricia</creatorcontrib><creatorcontrib>Croker, Lindsay</creatorcontrib><title>The dynamics of secretion during sea urchin embryonic skeleton formation</title><title>Experimental cell research</title><addtitle>Exp Cell Res</addtitle><description>Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Animals</subject><subject>Biomineralization</subject><subject>Calcein</subject><subject>Calcification, Physiologic</subject><subject>CALCIUM</subject><subject>Calcium - metabolism</subject><subject>Cellular biology</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeletal Proteins - secretion</subject><subject>Echinoidea</subject><subject>ELECTRON MICROSCOPY</subject><subject>EMBRYOS</subject><subject>Endoskeleton</subject><subject>Extracellular Matrix Proteins - genetics</subject><subject>Extracellular Matrix Proteins - metabolism</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>LABELLING</subject><subject>Marine</subject><subject>Marine biology</subject><subject>Minerals</subject><subject>PROTEINS</subject><subject>Recombinant Fusion Proteins - analysis</subject><subject>Sea urchin</subject><subject>SEA URCHINS</subject><subject>SECRETION</subject><subject>Skeletal system</subject><subject>SKELETON</subject><subject>Spicule</subject><subject>Strongylocentrotus purpuratus - cytology</subject><subject>Strongylocentrotus purpuratus - embryology</subject><subject>Strongylocentrotus purpuratus - metabolism</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhFyChCCRuCeOPJM4BJFQBRarEpZwtZzLpetnYxU4q9t_jsCu-DnCyNH7mnZn3Zewph4oDb17tqgN9w1gJAF0Br0A299iGQwelUELcZxsArkqlRXvGHqW0gwxq3jxkZ1zLutagN-zyekvFcPB2cpiKMBaJMNLsgi-GJTp_kwu2WCJunS9o6uMheIdF-kJ7mjM0hjjZFX_MHox2n-jJ6T1nn9-_u764LK8-ffh48faqxFrJuSQtO-q7WmLeBHohSIzaKlGDHHOtw8ZyxKEH2yN0oq-HcWgtkVRgR9lIec7eHHVvl36iAcnP0e7NbXSTjQcTrDN__ni3NTfhzgilVPYjC7w4CoQ0O5PQzYRbDN4TzkZwLjRvdaZensbE8HWhNJvJJaT93noKSzJNx-u6aeC_oACheNuuc5__Be7CEn32yvBONW3W6jIkjxDGkFKk8edhHMyautmZH6mbNXUD3OTUc9ez3z351XOKOQOvjwDlZO4cxfVu8kiDi-vZQ3D_HPAdEm6_6Q</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Wilt, Fred H.</creator><creator>Killian, Christopher E.</creator><creator>Hamilton, Patricia</creator><creator>Croker, Lindsay</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7QP</scope><scope>F1W</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20080501</creationdate><title>The dynamics of secretion during sea urchin embryonic skeleton formation</title><author>Wilt, Fred H. ; Killian, Christopher E. ; Hamilton, Patricia ; Croker, Lindsay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-e839eb953c8160b22e2f8a42503f3c89c6a1ccdb0abc092b5dfd7aee340af3633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Animals</topic><topic>Biomineralization</topic><topic>Calcein</topic><topic>Calcification, Physiologic</topic><topic>CALCIUM</topic><topic>Calcium - metabolism</topic><topic>Cellular biology</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeletal Proteins - secretion</topic><topic>Echinoidea</topic><topic>ELECTRON MICROSCOPY</topic><topic>EMBRYOS</topic><topic>Endoskeleton</topic><topic>Extracellular Matrix Proteins - genetics</topic><topic>Extracellular Matrix Proteins - metabolism</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>LABELLING</topic><topic>Marine</topic><topic>Marine biology</topic><topic>Minerals</topic><topic>PROTEINS</topic><topic>Recombinant Fusion Proteins - analysis</topic><topic>Sea urchin</topic><topic>SEA URCHINS</topic><topic>SECRETION</topic><topic>Skeletal system</topic><topic>SKELETON</topic><topic>Spicule</topic><topic>Strongylocentrotus purpuratus - cytology</topic><topic>Strongylocentrotus purpuratus - embryology</topic><topic>Strongylocentrotus purpuratus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilt, Fred H.</creatorcontrib><creatorcontrib>Killian, Christopher E.</creatorcontrib><creatorcontrib>Hamilton, Patricia</creatorcontrib><creatorcontrib>Croker, Lindsay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilt, Fred H.</au><au>Killian, Christopher E.</au><au>Hamilton, Patricia</au><au>Croker, Lindsay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamics of secretion during sea urchin embryonic skeleton formation</atitle><jtitle>Experimental cell research</jtitle><addtitle>Exp Cell Res</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>314</volume><issue>8</issue><spage>1744</spage><epage>1752</epage><pages>1744-1752</pages><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18355808</pmid><doi>10.1016/j.yexcr.2008.01.036</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4827
ispartof Experimental cell research, 2008-05, Vol.314 (8), p.1744-1752
issn 0014-4827
1090-2422
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2444014
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects 60 APPLIED LIFE SCIENCES
Animals
Biomineralization
Calcein
Calcification, Physiologic
CALCIUM
Calcium - metabolism
Cellular biology
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Cytoskeletal Proteins - secretion
Echinoidea
ELECTRON MICROSCOPY
EMBRYOS
Endoskeleton
Extracellular Matrix Proteins - genetics
Extracellular Matrix Proteins - metabolism
Green Fluorescent Proteins - genetics
LABELLING
Marine
Marine biology
Minerals
PROTEINS
Recombinant Fusion Proteins - analysis
Sea urchin
SEA URCHINS
SECRETION
Skeletal system
SKELETON
Spicule
Strongylocentrotus purpuratus - cytology
Strongylocentrotus purpuratus - embryology
Strongylocentrotus purpuratus - metabolism
title The dynamics of secretion during sea urchin embryonic skeleton formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamics%20of%20secretion%20during%20sea%20urchin%20embryonic%20skeleton%20formation&rft.jtitle=Experimental%20cell%20research&rft.au=Wilt,%20Fred%20H.&rft.date=2008-05-01&rft.volume=314&rft.issue=8&rft.spage=1744&rft.epage=1752&rft.pages=1744-1752&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1016/j.yexcr.2008.01.036&rft_dat=%3Cproquest_pubme%3E69155660%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194676039&rft_id=info:pmid/18355808&rft_els_id=S0014482708000700&rfr_iscdi=true