The dynamics of secretion during sea urchin embryonic skeleton formation
Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal...
Gespeichert in:
Veröffentlicht in: | Experimental cell research 2008-05, Vol.314 (8), p.1744-1752 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1752 |
---|---|
container_issue | 8 |
container_start_page | 1744 |
container_title | Experimental cell research |
container_volume | 314 |
creator | Wilt, Fred H. Killian, Christopher E. Hamilton, Patricia Croker, Lindsay |
description | Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes. |
doi_str_mv | 10.1016/j.yexcr.2008.01.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2444014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482708000700</els_id><sourcerecordid>69155660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-e839eb953c8160b22e2f8a42503f3c89c6a1ccdb0abc092b5dfd7aee340af3633</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhFyChCCRuCeOPJM4BJFQBRarEpZwtZzLpetnYxU4q9t_jsCu-DnCyNH7mnZn3Zewph4oDb17tqgN9w1gJAF0Br0A299iGQwelUELcZxsArkqlRXvGHqW0gwxq3jxkZ1zLutagN-zyekvFcPB2cpiKMBaJMNLsgi-GJTp_kwu2WCJunS9o6uMheIdF-kJ7mjM0hjjZFX_MHox2n-jJ6T1nn9-_u764LK8-ffh48faqxFrJuSQtO-q7WmLeBHohSIzaKlGDHHOtw8ZyxKEH2yN0oq-HcWgtkVRgR9lIec7eHHVvl36iAcnP0e7NbXSTjQcTrDN__ni3NTfhzgilVPYjC7w4CoQ0O5PQzYRbDN4TzkZwLjRvdaZensbE8HWhNJvJJaT93noKSzJNx-u6aeC_oACheNuuc5__Be7CEn32yvBONW3W6jIkjxDGkFKk8edhHMyautmZH6mbNXUD3OTUc9ez3z351XOKOQOvjwDlZO4cxfVu8kiDi-vZQ3D_HPAdEm6_6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194676039</pqid></control><display><type>article</type><title>The dynamics of secretion during sea urchin embryonic skeleton formation</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wilt, Fred H. ; Killian, Christopher E. ; Hamilton, Patricia ; Croker, Lindsay</creator><creatorcontrib>Wilt, Fred H. ; Killian, Christopher E. ; Hamilton, Patricia ; Croker, Lindsay</creatorcontrib><description>Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1016/j.yexcr.2008.01.036</identifier><identifier>PMID: 18355808</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Animals ; Biomineralization ; Calcein ; Calcification, Physiologic ; CALCIUM ; Calcium - metabolism ; Cellular biology ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Cytoskeletal Proteins - secretion ; Echinoidea ; ELECTRON MICROSCOPY ; EMBRYOS ; Endoskeleton ; Extracellular Matrix Proteins - genetics ; Extracellular Matrix Proteins - metabolism ; Green Fluorescent Proteins - genetics ; LABELLING ; Marine ; Marine biology ; Minerals ; PROTEINS ; Recombinant Fusion Proteins - analysis ; Sea urchin ; SEA URCHINS ; SECRETION ; Skeletal system ; SKELETON ; Spicule ; Strongylocentrotus purpuratus - cytology ; Strongylocentrotus purpuratus - embryology ; Strongylocentrotus purpuratus - metabolism</subject><ispartof>Experimental cell research, 2008-05, Vol.314 (8), p.1744-1752</ispartof><rights>2008 Elsevier Inc.</rights><rights>Copyright © 2008 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-e839eb953c8160b22e2f8a42503f3c89c6a1ccdb0abc092b5dfd7aee340af3633</citedby><cites>FETCH-LOGICAL-c543t-e839eb953c8160b22e2f8a42503f3c89c6a1ccdb0abc092b5dfd7aee340af3633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.yexcr.2008.01.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18355808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21128178$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilt, Fred H.</creatorcontrib><creatorcontrib>Killian, Christopher E.</creatorcontrib><creatorcontrib>Hamilton, Patricia</creatorcontrib><creatorcontrib>Croker, Lindsay</creatorcontrib><title>The dynamics of secretion during sea urchin embryonic skeleton formation</title><title>Experimental cell research</title><addtitle>Exp Cell Res</addtitle><description>Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Animals</subject><subject>Biomineralization</subject><subject>Calcein</subject><subject>Calcification, Physiologic</subject><subject>CALCIUM</subject><subject>Calcium - metabolism</subject><subject>Cellular biology</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeletal Proteins - secretion</subject><subject>Echinoidea</subject><subject>ELECTRON MICROSCOPY</subject><subject>EMBRYOS</subject><subject>Endoskeleton</subject><subject>Extracellular Matrix Proteins - genetics</subject><subject>Extracellular Matrix Proteins - metabolism</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>LABELLING</subject><subject>Marine</subject><subject>Marine biology</subject><subject>Minerals</subject><subject>PROTEINS</subject><subject>Recombinant Fusion Proteins - analysis</subject><subject>Sea urchin</subject><subject>SEA URCHINS</subject><subject>SECRETION</subject><subject>Skeletal system</subject><subject>SKELETON</subject><subject>Spicule</subject><subject>Strongylocentrotus purpuratus - cytology</subject><subject>Strongylocentrotus purpuratus - embryology</subject><subject>Strongylocentrotus purpuratus - metabolism</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhFyChCCRuCeOPJM4BJFQBRarEpZwtZzLpetnYxU4q9t_jsCu-DnCyNH7mnZn3Zewph4oDb17tqgN9w1gJAF0Br0A299iGQwelUELcZxsArkqlRXvGHqW0gwxq3jxkZ1zLutagN-zyekvFcPB2cpiKMBaJMNLsgi-GJTp_kwu2WCJunS9o6uMheIdF-kJ7mjM0hjjZFX_MHox2n-jJ6T1nn9-_u764LK8-ffh48faqxFrJuSQtO-q7WmLeBHohSIzaKlGDHHOtw8ZyxKEH2yN0oq-HcWgtkVRgR9lIec7eHHVvl36iAcnP0e7NbXSTjQcTrDN__ni3NTfhzgilVPYjC7w4CoQ0O5PQzYRbDN4TzkZwLjRvdaZensbE8HWhNJvJJaT93noKSzJNx-u6aeC_oACheNuuc5__Be7CEn32yvBONW3W6jIkjxDGkFKk8edhHMyautmZH6mbNXUD3OTUc9ez3z351XOKOQOvjwDlZO4cxfVu8kiDi-vZQ3D_HPAdEm6_6Q</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Wilt, Fred H.</creator><creator>Killian, Christopher E.</creator><creator>Hamilton, Patricia</creator><creator>Croker, Lindsay</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7QP</scope><scope>F1W</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20080501</creationdate><title>The dynamics of secretion during sea urchin embryonic skeleton formation</title><author>Wilt, Fred H. ; Killian, Christopher E. ; Hamilton, Patricia ; Croker, Lindsay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-e839eb953c8160b22e2f8a42503f3c89c6a1ccdb0abc092b5dfd7aee340af3633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Animals</topic><topic>Biomineralization</topic><topic>Calcein</topic><topic>Calcification, Physiologic</topic><topic>CALCIUM</topic><topic>Calcium - metabolism</topic><topic>Cellular biology</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeletal Proteins - secretion</topic><topic>Echinoidea</topic><topic>ELECTRON MICROSCOPY</topic><topic>EMBRYOS</topic><topic>Endoskeleton</topic><topic>Extracellular Matrix Proteins - genetics</topic><topic>Extracellular Matrix Proteins - metabolism</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>LABELLING</topic><topic>Marine</topic><topic>Marine biology</topic><topic>Minerals</topic><topic>PROTEINS</topic><topic>Recombinant Fusion Proteins - analysis</topic><topic>Sea urchin</topic><topic>SEA URCHINS</topic><topic>SECRETION</topic><topic>Skeletal system</topic><topic>SKELETON</topic><topic>Spicule</topic><topic>Strongylocentrotus purpuratus - cytology</topic><topic>Strongylocentrotus purpuratus - embryology</topic><topic>Strongylocentrotus purpuratus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilt, Fred H.</creatorcontrib><creatorcontrib>Killian, Christopher E.</creatorcontrib><creatorcontrib>Hamilton, Patricia</creatorcontrib><creatorcontrib>Croker, Lindsay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilt, Fred H.</au><au>Killian, Christopher E.</au><au>Hamilton, Patricia</au><au>Croker, Lindsay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamics of secretion during sea urchin embryonic skeleton formation</atitle><jtitle>Experimental cell research</jtitle><addtitle>Exp Cell Res</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>314</volume><issue>8</issue><spage>1744</spage><epage>1752</epage><pages>1744-1752</pages><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18355808</pmid><doi>10.1016/j.yexcr.2008.01.036</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4827 |
ispartof | Experimental cell research, 2008-05, Vol.314 (8), p.1744-1752 |
issn | 0014-4827 1090-2422 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2444014 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | 60 APPLIED LIFE SCIENCES Animals Biomineralization Calcein Calcification, Physiologic CALCIUM Calcium - metabolism Cellular biology Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Cytoskeletal Proteins - secretion Echinoidea ELECTRON MICROSCOPY EMBRYOS Endoskeleton Extracellular Matrix Proteins - genetics Extracellular Matrix Proteins - metabolism Green Fluorescent Proteins - genetics LABELLING Marine Marine biology Minerals PROTEINS Recombinant Fusion Proteins - analysis Sea urchin SEA URCHINS SECRETION Skeletal system SKELETON Spicule Strongylocentrotus purpuratus - cytology Strongylocentrotus purpuratus - embryology Strongylocentrotus purpuratus - metabolism |
title | The dynamics of secretion during sea urchin embryonic skeleton formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamics%20of%20secretion%20during%20sea%20urchin%20embryonic%20skeleton%20formation&rft.jtitle=Experimental%20cell%20research&rft.au=Wilt,%20Fred%20H.&rft.date=2008-05-01&rft.volume=314&rft.issue=8&rft.spage=1744&rft.epage=1752&rft.pages=1744-1752&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1016/j.yexcr.2008.01.036&rft_dat=%3Cproquest_pubme%3E69155660%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194676039&rft_id=info:pmid/18355808&rft_els_id=S0014482708000700&rfr_iscdi=true |