Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer

We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2008-04, Vol.71 (1), p.1-7
Hauptverfasser: Clapier, Cedric R., Chakravarthy, Srinivas, Petosa, Carlo, Fernández-Tornero, Carlos, Luger, Karolin, Müller, Christoph W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1
container_start_page 1
container_title Proteins, structure, function, and bioinformatics
container_volume 71
creator Clapier, Cedric R.
Chakravarthy, Srinivas
Petosa, Carlo
Fernández-Tornero, Carlos
Luger, Karolin
Müller, Christoph W.
description We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein–DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent‐exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A‐H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged. Proteins 2008. © 2007 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.21720
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2443955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20662373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5530-e0914c0c5028063f9035a4f8590ba5a8936942a87f2780aec10ae8769ad71fb03</originalsourceid><addsrcrecordid>eNp9kUFvFCEYhonR2HXrxR9g5uShydQPGAa4mLRVuzYbu9GqR8KyTAedGabAVPvvpd216qUHIPA938sLL0IvMBxiAPJ6DD4dEswJPEIzDJKXgGn1GM1ACF5SJtgeehbjdwCoJa2foj3MJeOckxmaPqcwmTQFW_imSK0t3gYf_di6ThfDZDqbd70tjM_EqENy-aho3WXb5ZFiYa99NyXnBx1uMjXEFLQbcsEPd3ILclQuyHFuickPtti43oZ99KTRXbTPd-scfXn_7uJkUS7PTz-cHC1LwxiF0oLElQHDgAioaSOBMl01gklYa6ZFfoysiBa8IVyAtgbnSfBa6g3HzRroHL3Z6o7TurcbY4fsrlNjcH22q7x26v_K4Fp16a8VqSoqs4c5erUTCP5qsjGp3kVju04P1k9REahrQjnN4MEWNPn7YrDN_SUY1G1K6jYldZdShl_-a-svuoslA3gL_HSdvXlASq0-nV_8ES23Pfmj7a_7Hh1-qJpTztS3j6fq65lgK3q2VCv6GyLerxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20662373</pqid></control><display><type>article</type><title>Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Clapier, Cedric R. ; Chakravarthy, Srinivas ; Petosa, Carlo ; Fernández-Tornero, Carlos ; Luger, Karolin ; Müller, Christoph W.</creator><creatorcontrib>Clapier, Cedric R. ; Chakravarthy, Srinivas ; Petosa, Carlo ; Fernández-Tornero, Carlos ; Luger, Karolin ; Müller, Christoph W.</creatorcontrib><description>We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein–DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent‐exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A‐H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged. Proteins 2008. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.21720</identifier><identifier>PMID: 17957772</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Substitution ; Amino Acids ; chromatin ; crystal structure ; Crystallography, X-Ray ; Dimerization ; DNA - chemistry ; Drosophila ; Drosophila melanogaster ; Drosophila Proteins - chemistry ; Evolution, Molecular ; Histones - chemistry ; Humans ; Hydrophobic and Hydrophilic Interactions ; nucleosome core particles ; Nucleosomes ; protein-DNA interaction ; Short Communication ; Solvents ; Xenopus laevis ; Xenopus Proteins - chemistry ; Xenopus Proteins - genetics</subject><ispartof>Proteins, structure, function, and bioinformatics, 2008-04, Vol.71 (1), p.1-7</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>(c) 2007 Wiley-Liss, Inc.</rights><rights>Copyright © 2008 Wiley-Liss, Inc., A Wiley Company 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5530-e0914c0c5028063f9035a4f8590ba5a8936942a87f2780aec10ae8769ad71fb03</citedby><cites>FETCH-LOGICAL-c5530-e0914c0c5028063f9035a4f8590ba5a8936942a87f2780aec10ae8769ad71fb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.21720$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.21720$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17957772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clapier, Cedric R.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Petosa, Carlo</creatorcontrib><creatorcontrib>Fernández-Tornero, Carlos</creatorcontrib><creatorcontrib>Luger, Karolin</creatorcontrib><creatorcontrib>Müller, Christoph W.</creatorcontrib><title>Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein–DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent‐exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A‐H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged. Proteins 2008. © 2007 Wiley‐Liss, Inc.</description><subject>Amino Acid Substitution</subject><subject>Amino Acids</subject><subject>chromatin</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - chemistry</subject><subject>Evolution, Molecular</subject><subject>Histones - chemistry</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>nucleosome core particles</subject><subject>Nucleosomes</subject><subject>protein-DNA interaction</subject><subject>Short Communication</subject><subject>Solvents</subject><subject>Xenopus laevis</subject><subject>Xenopus Proteins - chemistry</subject><subject>Xenopus Proteins - genetics</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUFvFCEYhonR2HXrxR9g5uShydQPGAa4mLRVuzYbu9GqR8KyTAedGabAVPvvpd216qUHIPA938sLL0IvMBxiAPJ6DD4dEswJPEIzDJKXgGn1GM1ACF5SJtgeehbjdwCoJa2foj3MJeOckxmaPqcwmTQFW_imSK0t3gYf_di6ThfDZDqbd70tjM_EqENy-aho3WXb5ZFiYa99NyXnBx1uMjXEFLQbcsEPd3ILclQuyHFuickPtti43oZ99KTRXbTPd-scfXn_7uJkUS7PTz-cHC1LwxiF0oLElQHDgAioaSOBMl01gklYa6ZFfoysiBa8IVyAtgbnSfBa6g3HzRroHL3Z6o7TurcbY4fsrlNjcH22q7x26v_K4Fp16a8VqSoqs4c5erUTCP5qsjGp3kVju04P1k9REahrQjnN4MEWNPn7YrDN_SUY1G1K6jYldZdShl_-a-svuoslA3gL_HSdvXlASq0-nV_8ES23Pfmj7a_7Hh1-qJpTztS3j6fq65lgK3q2VCv6GyLerxM</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Clapier, Cedric R.</creator><creator>Chakravarthy, Srinivas</creator><creator>Petosa, Carlo</creator><creator>Fernández-Tornero, Carlos</creator><creator>Luger, Karolin</creator><creator>Müller, Christoph W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>200804</creationdate><title>Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer</title><author>Clapier, Cedric R. ; Chakravarthy, Srinivas ; Petosa, Carlo ; Fernández-Tornero, Carlos ; Luger, Karolin ; Müller, Christoph W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5530-e0914c0c5028063f9035a4f8590ba5a8936942a87f2780aec10ae8769ad71fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acid Substitution</topic><topic>Amino Acids</topic><topic>chromatin</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - chemistry</topic><topic>Evolution, Molecular</topic><topic>Histones - chemistry</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>nucleosome core particles</topic><topic>Nucleosomes</topic><topic>protein-DNA interaction</topic><topic>Short Communication</topic><topic>Solvents</topic><topic>Xenopus laevis</topic><topic>Xenopus Proteins - chemistry</topic><topic>Xenopus Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clapier, Cedric R.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Petosa, Carlo</creatorcontrib><creatorcontrib>Fernández-Tornero, Carlos</creatorcontrib><creatorcontrib>Luger, Karolin</creatorcontrib><creatorcontrib>Müller, Christoph W.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clapier, Cedric R.</au><au>Chakravarthy, Srinivas</au><au>Petosa, Carlo</au><au>Fernández-Tornero, Carlos</au><au>Luger, Karolin</au><au>Müller, Christoph W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2008-04</date><risdate>2008</risdate><volume>71</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein–DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent‐exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A‐H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged. Proteins 2008. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17957772</pmid><doi>10.1002/prot.21720</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2008-04, Vol.71 (1), p.1-7
issn 0887-3585
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2443955
source MEDLINE; Access via Wiley Online Library
subjects Amino Acid Substitution
Amino Acids
chromatin
crystal structure
Crystallography, X-Ray
Dimerization
DNA - chemistry
Drosophila
Drosophila melanogaster
Drosophila Proteins - chemistry
Evolution, Molecular
Histones - chemistry
Humans
Hydrophobic and Hydrophilic Interactions
nucleosome core particles
Nucleosomes
protein-DNA interaction
Short Communication
Solvents
Xenopus laevis
Xenopus Proteins - chemistry
Xenopus Proteins - genetics
title Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20Drosophila%20nucleosome%20core%20particle%20highlights%20evolutionary%20constraints%20on%20the%20H2A-H2B%20histone%20dimer&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Clapier,%20Cedric%20R.&rft.date=2008-04&rft.volume=71&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.21720&rft_dat=%3Cproquest_pubme%3E20662373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20662373&rft_id=info:pmid/17957772&rfr_iscdi=true