Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer
We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino ac...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2008-04, Vol.71 (1), p.1-7 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 71 |
creator | Clapier, Cedric R. Chakravarthy, Srinivas Petosa, Carlo Fernández-Tornero, Carlos Luger, Karolin Müller, Christoph W. |
description | We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein–DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent‐exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A‐H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged. Proteins 2008. © 2007 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/prot.21720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2443955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20662373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5530-e0914c0c5028063f9035a4f8590ba5a8936942a87f2780aec10ae8769ad71fb03</originalsourceid><addsrcrecordid>eNp9kUFvFCEYhonR2HXrxR9g5uShydQPGAa4mLRVuzYbu9GqR8KyTAedGabAVPvvpd216qUHIPA938sLL0IvMBxiAPJ6DD4dEswJPEIzDJKXgGn1GM1ACF5SJtgeehbjdwCoJa2foj3MJeOckxmaPqcwmTQFW_imSK0t3gYf_di6ThfDZDqbd70tjM_EqENy-aho3WXb5ZFiYa99NyXnBx1uMjXEFLQbcsEPd3ILclQuyHFuickPtti43oZ99KTRXbTPd-scfXn_7uJkUS7PTz-cHC1LwxiF0oLElQHDgAioaSOBMl01gklYa6ZFfoysiBa8IVyAtgbnSfBa6g3HzRroHL3Z6o7TurcbY4fsrlNjcH22q7x26v_K4Fp16a8VqSoqs4c5erUTCP5qsjGp3kVju04P1k9REahrQjnN4MEWNPn7YrDN_SUY1G1K6jYldZdShl_-a-svuoslA3gL_HSdvXlASq0-nV_8ES23Pfmj7a_7Hh1-qJpTztS3j6fq65lgK3q2VCv6GyLerxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20662373</pqid></control><display><type>article</type><title>Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Clapier, Cedric R. ; Chakravarthy, Srinivas ; Petosa, Carlo ; Fernández-Tornero, Carlos ; Luger, Karolin ; Müller, Christoph W.</creator><creatorcontrib>Clapier, Cedric R. ; Chakravarthy, Srinivas ; Petosa, Carlo ; Fernández-Tornero, Carlos ; Luger, Karolin ; Müller, Christoph W.</creatorcontrib><description>We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein–DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent‐exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A‐H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged. Proteins 2008. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.21720</identifier><identifier>PMID: 17957772</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Substitution ; Amino Acids ; chromatin ; crystal structure ; Crystallography, X-Ray ; Dimerization ; DNA - chemistry ; Drosophila ; Drosophila melanogaster ; Drosophila Proteins - chemistry ; Evolution, Molecular ; Histones - chemistry ; Humans ; Hydrophobic and Hydrophilic Interactions ; nucleosome core particles ; Nucleosomes ; protein-DNA interaction ; Short Communication ; Solvents ; Xenopus laevis ; Xenopus Proteins - chemistry ; Xenopus Proteins - genetics</subject><ispartof>Proteins, structure, function, and bioinformatics, 2008-04, Vol.71 (1), p.1-7</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>(c) 2007 Wiley-Liss, Inc.</rights><rights>Copyright © 2008 Wiley-Liss, Inc., A Wiley Company 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5530-e0914c0c5028063f9035a4f8590ba5a8936942a87f2780aec10ae8769ad71fb03</citedby><cites>FETCH-LOGICAL-c5530-e0914c0c5028063f9035a4f8590ba5a8936942a87f2780aec10ae8769ad71fb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.21720$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.21720$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17957772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clapier, Cedric R.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Petosa, Carlo</creatorcontrib><creatorcontrib>Fernández-Tornero, Carlos</creatorcontrib><creatorcontrib>Luger, Karolin</creatorcontrib><creatorcontrib>Müller, Christoph W.</creatorcontrib><title>Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein–DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent‐exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A‐H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged. Proteins 2008. © 2007 Wiley‐Liss, Inc.</description><subject>Amino Acid Substitution</subject><subject>Amino Acids</subject><subject>chromatin</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - chemistry</subject><subject>Evolution, Molecular</subject><subject>Histones - chemistry</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>nucleosome core particles</subject><subject>Nucleosomes</subject><subject>protein-DNA interaction</subject><subject>Short Communication</subject><subject>Solvents</subject><subject>Xenopus laevis</subject><subject>Xenopus Proteins - chemistry</subject><subject>Xenopus Proteins - genetics</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUFvFCEYhonR2HXrxR9g5uShydQPGAa4mLRVuzYbu9GqR8KyTAedGabAVPvvpd216qUHIPA938sLL0IvMBxiAPJ6DD4dEswJPEIzDJKXgGn1GM1ACF5SJtgeehbjdwCoJa2foj3MJeOckxmaPqcwmTQFW_imSK0t3gYf_di6ThfDZDqbd70tjM_EqENy-aho3WXb5ZFiYa99NyXnBx1uMjXEFLQbcsEPd3ILclQuyHFuickPtti43oZ99KTRXbTPd-scfXn_7uJkUS7PTz-cHC1LwxiF0oLElQHDgAioaSOBMl01gklYa6ZFfoysiBa8IVyAtgbnSfBa6g3HzRroHL3Z6o7TurcbY4fsrlNjcH22q7x26v_K4Fp16a8VqSoqs4c5erUTCP5qsjGp3kVju04P1k9REahrQjnN4MEWNPn7YrDN_SUY1G1K6jYldZdShl_-a-svuoslA3gL_HSdvXlASq0-nV_8ES23Pfmj7a_7Hh1-qJpTztS3j6fq65lgK3q2VCv6GyLerxM</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Clapier, Cedric R.</creator><creator>Chakravarthy, Srinivas</creator><creator>Petosa, Carlo</creator><creator>Fernández-Tornero, Carlos</creator><creator>Luger, Karolin</creator><creator>Müller, Christoph W.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>200804</creationdate><title>Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer</title><author>Clapier, Cedric R. ; Chakravarthy, Srinivas ; Petosa, Carlo ; Fernández-Tornero, Carlos ; Luger, Karolin ; Müller, Christoph W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5530-e0914c0c5028063f9035a4f8590ba5a8936942a87f2780aec10ae8769ad71fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acid Substitution</topic><topic>Amino Acids</topic><topic>chromatin</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - chemistry</topic><topic>Evolution, Molecular</topic><topic>Histones - chemistry</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>nucleosome core particles</topic><topic>Nucleosomes</topic><topic>protein-DNA interaction</topic><topic>Short Communication</topic><topic>Solvents</topic><topic>Xenopus laevis</topic><topic>Xenopus Proteins - chemistry</topic><topic>Xenopus Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clapier, Cedric R.</creatorcontrib><creatorcontrib>Chakravarthy, Srinivas</creatorcontrib><creatorcontrib>Petosa, Carlo</creatorcontrib><creatorcontrib>Fernández-Tornero, Carlos</creatorcontrib><creatorcontrib>Luger, Karolin</creatorcontrib><creatorcontrib>Müller, Christoph W.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clapier, Cedric R.</au><au>Chakravarthy, Srinivas</au><au>Petosa, Carlo</au><au>Fernández-Tornero, Carlos</au><au>Luger, Karolin</au><au>Müller, Christoph W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2008-04</date><risdate>2008</risdate><volume>71</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>We determined the 2.45 Å crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base‐pair DNA fragment derived from human α‐satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein–DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent‐exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A‐H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged. Proteins 2008. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17957772</pmid><doi>10.1002/prot.21720</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2008-04, Vol.71 (1), p.1-7 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2443955 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Amino Acid Substitution Amino Acids chromatin crystal structure Crystallography, X-Ray Dimerization DNA - chemistry Drosophila Drosophila melanogaster Drosophila Proteins - chemistry Evolution, Molecular Histones - chemistry Humans Hydrophobic and Hydrophilic Interactions nucleosome core particles Nucleosomes protein-DNA interaction Short Communication Solvents Xenopus laevis Xenopus Proteins - chemistry Xenopus Proteins - genetics |
title | Structure of the Drosophila nucleosome core particle highlights evolutionary constraints on the H2A-H2B histone dimer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20Drosophila%20nucleosome%20core%20particle%20highlights%20evolutionary%20constraints%20on%20the%20H2A-H2B%20histone%20dimer&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Clapier,%20Cedric%20R.&rft.date=2008-04&rft.volume=71&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.21720&rft_dat=%3Cproquest_pubme%3E20662373%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20662373&rft_id=info:pmid/17957772&rfr_iscdi=true |