Agent-based modelling as scientific method: a case study analysing primate social behaviour
A scientific methodology in general should provide two things: first, a means of explanation and, second, a mechanism for improving that explanation. Agent-based modelling (ABM) is a method that facilitates exploring the collective effects of individual action selection. The explanatory force of the...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2007-09, Vol.362 (1485), p.1685-1699 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1699 |
---|---|
container_issue | 1485 |
container_start_page | 1685 |
container_title | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
container_volume | 362 |
creator | Bryson, Joanna J Ando, Yasushi Lehmann, Hagen |
description | A scientific methodology in general should provide two things: first, a means of explanation and, second, a mechanism for improving that explanation. Agent-based modelling (ABM) is a method that facilitates exploring the collective effects of individual action selection. The explanatory force of the model is the extent to which an observed meta-level phenomenon can be accounted for by the behaviour of its micro-level actors. This article demonstrates that this methodology can be applied to the biological sciences; agent-based models, like any other scientific hypotheses, can be tested, critiqued, generalized or specified. We review the state of the art for ABM as a methodology for biology and then present a case study based on the most widely published agent-based model in the biological sciences: Hemelrijk's DomWorld, a model of primate social behaviour. Our analysis shows some significant discrepancies between this model and the behaviour of the macaques, the genus used for our analysis. We also demonstrate that the model is not fragile: its other results are still valid and can be extended to compensate for these problems. This robustness is a standard advantage of experiment-based artificial intelligence modelling techniques over analytic modelling. |
doi_str_mv | 10.1098/rstb.2007.2061 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2440780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20209971</jstor_id><sourcerecordid>20209971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-407e68a25bfe16a6bd63eec2adb7d0c6200dce33f4e8ba17fcfa54fb828a2f9f3</originalsourceid><addsrcrecordid>eNqFkUuP0zAUhSMEYoaBLTtQVuxS_IrtsECMRsyANAIJ8ZBgYTmO3bqkcbGdgf57bkhV6AJQpETJ-c7xzT1F8RCjBUaNfBpTbhcEIQE3jm8Vp5gJXJFGoNvFKWo4qSSj_KS4l9IaIdTUgt0tTrBglMmanBZfzpd2yFWrk-3KTehs3_thWepUJuNB8c6bcmPzKnTPSl0a4MqUx25X6kH3uzTB2-g3OsP3YLzuy9au9I0PY7xf3HG6T_bB_nlWfLh8-f7iVXX99ur1xfl1ZTghuWJIWC41qVtnMde87Ti11hDdtaJDwCDUGUupY1a2GgtnnK6ZayUBk2scPSuez7nbsd1YYIccda9-jRV3KmivjpXBr9Qy3CjC4GyJIODJPiCGb6NNWW18MrAKPdgwJsUlhgvR_4IEGN4gAuBiBk0MKUXrDtNgpKbi1FScmopTU3FgePznP_zG900BQGcghh0sE1Zt806tYc3QQ_p77KPZtU45xEMqQQQ1jZj0atZ9yvbHQdfxq-KCilp9lEwx-enyHb36rN4Aj2d-5Zer7z5adTQOvGzhfMqJwjC1wlzW4HnxT880sQlDhnKOncqNPdTYOfoTfNLqgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20336902</pqid></control><display><type>article</type><title>Agent-based modelling as scientific method: a case study analysing primate social behaviour</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Bryson, Joanna J ; Ando, Yasushi ; Lehmann, Hagen</creator><creatorcontrib>Bryson, Joanna J ; Ando, Yasushi ; Lehmann, Hagen</creatorcontrib><description>A scientific methodology in general should provide two things: first, a means of explanation and, second, a mechanism for improving that explanation. Agent-based modelling (ABM) is a method that facilitates exploring the collective effects of individual action selection. The explanatory force of the model is the extent to which an observed meta-level phenomenon can be accounted for by the behaviour of its micro-level actors. This article demonstrates that this methodology can be applied to the biological sciences; agent-based models, like any other scientific hypotheses, can be tested, critiqued, generalized or specified. We review the state of the art for ABM as a methodology for biology and then present a case study based on the most widely published agent-based model in the biological sciences: Hemelrijk's DomWorld, a model of primate social behaviour. Our analysis shows some significant discrepancies between this model and the behaviour of the macaques, the genus used for our analysis. We also demonstrate that the model is not fragile: its other results are still valid and can be extended to compensate for these problems. This robustness is a standard advantage of experiment-based artificial intelligence modelling techniques over analytic modelling.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2007.2061</identifier><identifier>PMID: 17434852</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Agent-Based Modelling ; Animals ; Behavior modeling ; Behavior, Animal ; Despotism ; DomWorld ; Female ; Female animals ; Hemelrijk ; Macaca ; Macaca - psychology ; Male ; Male animals ; Modeling ; Models, Psychological ; Primate Social Behaviour ; Primates ; Research Article ; Scientific method ; Social Behavior ; Social interaction ; Validation</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2007-09, Vol.362 (1485), p.1685-1699</ispartof><rights>Copyright 2007 The Royal Society</rights><rights>2007 The Royal Society</rights><rights>2007 The Royal Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-407e68a25bfe16a6bd63eec2adb7d0c6200dce33f4e8ba17fcfa54fb828a2f9f3</citedby><cites>FETCH-LOGICAL-c622t-407e68a25bfe16a6bd63eec2adb7d0c6200dce33f4e8ba17fcfa54fb828a2f9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20209971$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20209971$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17434852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bryson, Joanna J</creatorcontrib><creatorcontrib>Ando, Yasushi</creatorcontrib><creatorcontrib>Lehmann, Hagen</creatorcontrib><title>Agent-based modelling as scientific method: a case study analysing primate social behaviour</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>A scientific methodology in general should provide two things: first, a means of explanation and, second, a mechanism for improving that explanation. Agent-based modelling (ABM) is a method that facilitates exploring the collective effects of individual action selection. The explanatory force of the model is the extent to which an observed meta-level phenomenon can be accounted for by the behaviour of its micro-level actors. This article demonstrates that this methodology can be applied to the biological sciences; agent-based models, like any other scientific hypotheses, can be tested, critiqued, generalized or specified. We review the state of the art for ABM as a methodology for biology and then present a case study based on the most widely published agent-based model in the biological sciences: Hemelrijk's DomWorld, a model of primate social behaviour. Our analysis shows some significant discrepancies between this model and the behaviour of the macaques, the genus used for our analysis. We also demonstrate that the model is not fragile: its other results are still valid and can be extended to compensate for these problems. This robustness is a standard advantage of experiment-based artificial intelligence modelling techniques over analytic modelling.</description><subject>Agent-Based Modelling</subject><subject>Animals</subject><subject>Behavior modeling</subject><subject>Behavior, Animal</subject><subject>Despotism</subject><subject>DomWorld</subject><subject>Female</subject><subject>Female animals</subject><subject>Hemelrijk</subject><subject>Macaca</subject><subject>Macaca - psychology</subject><subject>Male</subject><subject>Male animals</subject><subject>Modeling</subject><subject>Models, Psychological</subject><subject>Primate Social Behaviour</subject><subject>Primates</subject><subject>Research Article</subject><subject>Scientific method</subject><subject>Social Behavior</subject><subject>Social interaction</subject><subject>Validation</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuP0zAUhSMEYoaBLTtQVuxS_IrtsECMRsyANAIJ8ZBgYTmO3bqkcbGdgf57bkhV6AJQpETJ-c7xzT1F8RCjBUaNfBpTbhcEIQE3jm8Vp5gJXJFGoNvFKWo4qSSj_KS4l9IaIdTUgt0tTrBglMmanBZfzpd2yFWrk-3KTehs3_thWepUJuNB8c6bcmPzKnTPSl0a4MqUx25X6kH3uzTB2-g3OsP3YLzuy9au9I0PY7xf3HG6T_bB_nlWfLh8-f7iVXX99ur1xfl1ZTghuWJIWC41qVtnMde87Ti11hDdtaJDwCDUGUupY1a2GgtnnK6ZayUBk2scPSuez7nbsd1YYIccda9-jRV3KmivjpXBr9Qy3CjC4GyJIODJPiCGb6NNWW18MrAKPdgwJsUlhgvR_4IEGN4gAuBiBk0MKUXrDtNgpKbi1FScmopTU3FgePznP_zG900BQGcghh0sE1Zt806tYc3QQ_p77KPZtU45xEMqQQQ1jZj0atZ9yvbHQdfxq-KCilp9lEwx-enyHb36rN4Aj2d-5Zer7z5adTQOvGzhfMqJwjC1wlzW4HnxT880sQlDhnKOncqNPdTYOfoTfNLqgQ</recordid><startdate>20070929</startdate><enddate>20070929</enddate><creator>Bryson, Joanna J</creator><creator>Ando, Yasushi</creator><creator>Lehmann, Hagen</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070929</creationdate><title>Agent-based modelling as scientific method: a case study analysing primate social behaviour</title><author>Bryson, Joanna J ; Ando, Yasushi ; Lehmann, Hagen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-407e68a25bfe16a6bd63eec2adb7d0c6200dce33f4e8ba17fcfa54fb828a2f9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Agent-Based Modelling</topic><topic>Animals</topic><topic>Behavior modeling</topic><topic>Behavior, Animal</topic><topic>Despotism</topic><topic>DomWorld</topic><topic>Female</topic><topic>Female animals</topic><topic>Hemelrijk</topic><topic>Macaca</topic><topic>Macaca - psychology</topic><topic>Male</topic><topic>Male animals</topic><topic>Modeling</topic><topic>Models, Psychological</topic><topic>Primate Social Behaviour</topic><topic>Primates</topic><topic>Research Article</topic><topic>Scientific method</topic><topic>Social Behavior</topic><topic>Social interaction</topic><topic>Validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryson, Joanna J</creatorcontrib><creatorcontrib>Ando, Yasushi</creatorcontrib><creatorcontrib>Lehmann, Hagen</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryson, Joanna J</au><au>Ando, Yasushi</au><au>Lehmann, Hagen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agent-based modelling as scientific method: a case study analysing primate social behaviour</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2007-09-29</date><risdate>2007</risdate><volume>362</volume><issue>1485</issue><spage>1685</spage><epage>1699</epage><pages>1685-1699</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>A scientific methodology in general should provide two things: first, a means of explanation and, second, a mechanism for improving that explanation. Agent-based modelling (ABM) is a method that facilitates exploring the collective effects of individual action selection. The explanatory force of the model is the extent to which an observed meta-level phenomenon can be accounted for by the behaviour of its micro-level actors. This article demonstrates that this methodology can be applied to the biological sciences; agent-based models, like any other scientific hypotheses, can be tested, critiqued, generalized or specified. We review the state of the art for ABM as a methodology for biology and then present a case study based on the most widely published agent-based model in the biological sciences: Hemelrijk's DomWorld, a model of primate social behaviour. Our analysis shows some significant discrepancies between this model and the behaviour of the macaques, the genus used for our analysis. We also demonstrate that the model is not fragile: its other results are still valid and can be extended to compensate for these problems. This robustness is a standard advantage of experiment-based artificial intelligence modelling techniques over analytic modelling.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>17434852</pmid><doi>10.1098/rstb.2007.2061</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8436 |
ispartof | Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2007-09, Vol.362 (1485), p.1685-1699 |
issn | 0962-8436 1471-2970 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2440780 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central |
subjects | Agent-Based Modelling Animals Behavior modeling Behavior, Animal Despotism DomWorld Female Female animals Hemelrijk Macaca Macaca - psychology Male Male animals Modeling Models, Psychological Primate Social Behaviour Primates Research Article Scientific method Social Behavior Social interaction Validation |
title | Agent-based modelling as scientific method: a case study analysing primate social behaviour |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agent-based%20modelling%20as%20scientific%20method:%20a%20case%20study%20analysing%20primate%20social%20behaviour&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Bryson,%20Joanna%20J&rft.date=2007-09-29&rft.volume=362&rft.issue=1485&rft.spage=1685&rft.epage=1699&rft.pages=1685-1699&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2007.2061&rft_dat=%3Cjstor_pubme%3E20209971%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20336902&rft_id=info:pmid/17434852&rft_jstor_id=20209971&rfr_iscdi=true |