Fjord-region Benzo[g]chrysene-11,12-dihydrodiol and Benzo[c]phenanthrene-3,4-dihydrodiol as Substrates for Rat Liver Dihydrodiol Dehydrogenase (AKR1C9): Structural Basis for Stereochemical Preference
This study demonstrates that benzo[g]chrysene-11,12-dihydrodiol (B[g]C-11,12-dihydrodiol) derived from the fjord-region parent hydrocarbon B[g]C is oxidized by rat AKR1C9 with a k c a t/K m 100 times greater than that observed with the commonly studied bay-region benzo[a]pyrene-7,8-dihydrodiol (B[a]...
Gespeichert in:
Veröffentlicht in: | Chemical research in toxicology 2008-03, Vol.21 (3), p.668-677 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 677 |
---|---|
container_issue | 3 |
container_start_page | 668 |
container_title | Chemical research in toxicology |
container_volume | 21 |
creator | Shultz, Carol A Palackal, Nisha T Mangal, Dipti Harvey, Ronald G Blair, Ian A Penning, Trevor M |
description | This study demonstrates that benzo[g]chrysene-11,12-dihydrodiol (B[g]C-11,12-dihydrodiol) derived from the fjord-region parent hydrocarbon B[g]C is oxidized by rat AKR1C9 with a k c a t/K m 100 times greater than that observed with the commonly studied bay-region benzo[a]pyrene-7,8-dihydrodiol (B[a]P-7,8-dihydrodiol). Conversely, despite its strikingly similar structure to B[g]C-11,12-dihydrodiol, benzo[c]phenanthrene-3,4-dihydrodiol (B[c]Ph-3,4-dihydrodiol) is consumed by AKR1C9 at sluggish rates comparable to those observed with B[a]P-7,8-dihydrodiol. CD spectroscopy revealed that only the (+)-B[g]C-11,12-dihydrodiol stereoisomer was oxidized, while AKR1C9 oxidized both stereoisomers of B[a]P-7,8-dihydrodiol and B[c]Ph-3,4-dihydrodiol. The (+)-S,S- and (−)-R,R-stereoisomers of B[g]C-11,12-dihydrodiol were purified by chiral RP-HPLC. The 11S,12S-stereoisomer was oxidized at the same rate as the racemate. The 11R,12R-stereoisomer did not act as an inhibitor to AKR1C9, indicating that the (−)-R,R-stereoisomer was excluded from the active site. To understand the basis of stereochemical preference, we screened alanine-scanning mutants of active site residues of AKR1C9. These studies revealed that in comparison to the wild type, F129A, W227A, and Y310A enabled the oxidation of both the B[g]C-11S,12S-dihydrodiol and the B[g]C-11R,12R-dihydrodiol. Molecular modeling revealed that unlike B[a]P-7,8-dihydrodiol and B[c]Ph-3,4-dihydrodiol, B[g]C-11,12-dihydrodiol enantiomers are significantly bent out of plane. As a consequence, the (−)-R,R-stereoisomer was prevented from binding to the active site because of unfavorable interactions with F129, W227, or Y310. Additionally, LC/MS validated that the product of the reaction of B[g]C-11,12-dihydrodiol oxidation catalyzed by AKR1C9 was B[g]C-11,12-dione, which was trapped in vitro with the nucleophile 2-mercaptoethanol. The similarity between rates of trans-dihydrodiol oxidation by the rat and human liver specific AKRs (AKR1C9 and AKR1C4) implicate these enzymes in hepatocarcinogenesis in rats observed with the fjord-region PAH. |
doi_str_mv | 10.1021/tx7003695 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2440589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70404525</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-4351d073d76a7873ea6011791027815c7b827b2e607eaf05dbd4e71d15665ba83</originalsourceid><addsrcrecordid>eNqFktFu0zAUhi0EYqVwwQug3ICYtIDtxHHKBdLWrYBWRLUOCQlNluOcNi6p3dnOtPKCvBYurcomIXFly-fT7__85yD0nOA3BFPyNtxyjLNiwB6gHmEUpwwT_BD1cDnIUkrLbwfoifcLjEnE-WN0QErKCCOkh36NFtbVqYO5tiY5AfPTfp9fqcatPRhICTkiNK11s66drbVtE2nqHaauVg0YaULjNmh2lN8HfTLtKh-cDOCTmXXJhQzJWN-AS07vcKfw5z6PUh6S18fnF2Q4OHyXTIPrVOicbJMT6fVWYhrAgVUNLLWKhYmDWXwwCp6iRzPZeni2O_vo6-jscvgxHX_58Gl4PE5lzmlI84yRGvOs5oXkJc9AFjEUPtjkUhKmeFVSXlEoMAc5w6yu6hw4qQkrClbJMuuj91vdVVctoVZgYoOtWDm9lG4trNTifsXoRsztjaB5jlmcRx-92gk4e92BD2KpvYK2lQZs5wXHOc4ZZf8FaZwuw3xj6XALKme9j4ns3RAsNvsh9vsR2Rd37f8ldwsRgXQLaB_gdl-X7ocoeMaZuJxMxeR8PJrSIRafI_9yy0vlxcJ2zsT0__Hxb6D4074</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20895078</pqid></control><display><type>article</type><title>Fjord-region Benzo[g]chrysene-11,12-dihydrodiol and Benzo[c]phenanthrene-3,4-dihydrodiol as Substrates for Rat Liver Dihydrodiol Dehydrogenase (AKR1C9): Structural Basis for Stereochemical Preference</title><source>MEDLINE</source><source>ACS Publications</source><creator>Shultz, Carol A ; Palackal, Nisha T ; Mangal, Dipti ; Harvey, Ronald G ; Blair, Ian A ; Penning, Trevor M</creator><creatorcontrib>Shultz, Carol A ; Palackal, Nisha T ; Mangal, Dipti ; Harvey, Ronald G ; Blair, Ian A ; Penning, Trevor M</creatorcontrib><description>This study demonstrates that benzo[g]chrysene-11,12-dihydrodiol (B[g]C-11,12-dihydrodiol) derived from the fjord-region parent hydrocarbon B[g]C is oxidized by rat AKR1C9 with a k c a t/K m 100 times greater than that observed with the commonly studied bay-region benzo[a]pyrene-7,8-dihydrodiol (B[a]P-7,8-dihydrodiol). Conversely, despite its strikingly similar structure to B[g]C-11,12-dihydrodiol, benzo[c]phenanthrene-3,4-dihydrodiol (B[c]Ph-3,4-dihydrodiol) is consumed by AKR1C9 at sluggish rates comparable to those observed with B[a]P-7,8-dihydrodiol. CD spectroscopy revealed that only the (+)-B[g]C-11,12-dihydrodiol stereoisomer was oxidized, while AKR1C9 oxidized both stereoisomers of B[a]P-7,8-dihydrodiol and B[c]Ph-3,4-dihydrodiol. The (+)-S,S- and (−)-R,R-stereoisomers of B[g]C-11,12-dihydrodiol were purified by chiral RP-HPLC. The 11S,12S-stereoisomer was oxidized at the same rate as the racemate. The 11R,12R-stereoisomer did not act as an inhibitor to AKR1C9, indicating that the (−)-R,R-stereoisomer was excluded from the active site. To understand the basis of stereochemical preference, we screened alanine-scanning mutants of active site residues of AKR1C9. These studies revealed that in comparison to the wild type, F129A, W227A, and Y310A enabled the oxidation of both the B[g]C-11S,12S-dihydrodiol and the B[g]C-11R,12R-dihydrodiol. Molecular modeling revealed that unlike B[a]P-7,8-dihydrodiol and B[c]Ph-3,4-dihydrodiol, B[g]C-11,12-dihydrodiol enantiomers are significantly bent out of plane. As a consequence, the (−)-R,R-stereoisomer was prevented from binding to the active site because of unfavorable interactions with F129, W227, or Y310. Additionally, LC/MS validated that the product of the reaction of B[g]C-11,12-dihydrodiol oxidation catalyzed by AKR1C9 was B[g]C-11,12-dione, which was trapped in vitro with the nucleophile 2-mercaptoethanol. The similarity between rates of trans-dihydrodiol oxidation by the rat and human liver specific AKRs (AKR1C9 and AKR1C4) implicate these enzymes in hepatocarcinogenesis in rats observed with the fjord-region PAH.</description><identifier>ISSN: 0893-228X</identifier><identifier>EISSN: 1520-5010</identifier><identifier>DOI: 10.1021/tx7003695</identifier><identifier>PMID: 18251511</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alanine - genetics ; Alcohol Oxidoreductases - metabolism ; Animals ; Chromatography, High Pressure Liquid ; Chrysenes - chemistry ; Chrysenes - metabolism ; Circular Dichroism ; Humans ; In Vitro Techniques ; Indicators and Reagents ; Kinetics ; Liver - enzymology ; Liver - metabolism ; Mass Spectrometry ; Mercaptoethanol - metabolism ; Models, Molecular ; Mutation - genetics ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Phenanthrenes - chemistry ; Phenanthrenes - metabolism ; Rats ; Rats, Inbred F344 ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - genetics ; Stereoisomerism ; Structure-Activity Relationship ; Substrate Specificity</subject><ispartof>Chemical research in toxicology, 2008-03, Vol.21 (3), p.668-677</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-4351d073d76a7873ea6011791027815c7b827b2e607eaf05dbd4e71d15665ba83</citedby><cites>FETCH-LOGICAL-a472t-4351d073d76a7873ea6011791027815c7b827b2e607eaf05dbd4e71d15665ba83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/tx7003695$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/tx7003695$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18251511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shultz, Carol A</creatorcontrib><creatorcontrib>Palackal, Nisha T</creatorcontrib><creatorcontrib>Mangal, Dipti</creatorcontrib><creatorcontrib>Harvey, Ronald G</creatorcontrib><creatorcontrib>Blair, Ian A</creatorcontrib><creatorcontrib>Penning, Trevor M</creatorcontrib><title>Fjord-region Benzo[g]chrysene-11,12-dihydrodiol and Benzo[c]phenanthrene-3,4-dihydrodiol as Substrates for Rat Liver Dihydrodiol Dehydrogenase (AKR1C9): Structural Basis for Stereochemical Preference</title><title>Chemical research in toxicology</title><addtitle>Chem. Res. Toxicol</addtitle><description>This study demonstrates that benzo[g]chrysene-11,12-dihydrodiol (B[g]C-11,12-dihydrodiol) derived from the fjord-region parent hydrocarbon B[g]C is oxidized by rat AKR1C9 with a k c a t/K m 100 times greater than that observed with the commonly studied bay-region benzo[a]pyrene-7,8-dihydrodiol (B[a]P-7,8-dihydrodiol). Conversely, despite its strikingly similar structure to B[g]C-11,12-dihydrodiol, benzo[c]phenanthrene-3,4-dihydrodiol (B[c]Ph-3,4-dihydrodiol) is consumed by AKR1C9 at sluggish rates comparable to those observed with B[a]P-7,8-dihydrodiol. CD spectroscopy revealed that only the (+)-B[g]C-11,12-dihydrodiol stereoisomer was oxidized, while AKR1C9 oxidized both stereoisomers of B[a]P-7,8-dihydrodiol and B[c]Ph-3,4-dihydrodiol. The (+)-S,S- and (−)-R,R-stereoisomers of B[g]C-11,12-dihydrodiol were purified by chiral RP-HPLC. The 11S,12S-stereoisomer was oxidized at the same rate as the racemate. The 11R,12R-stereoisomer did not act as an inhibitor to AKR1C9, indicating that the (−)-R,R-stereoisomer was excluded from the active site. To understand the basis of stereochemical preference, we screened alanine-scanning mutants of active site residues of AKR1C9. These studies revealed that in comparison to the wild type, F129A, W227A, and Y310A enabled the oxidation of both the B[g]C-11S,12S-dihydrodiol and the B[g]C-11R,12R-dihydrodiol. Molecular modeling revealed that unlike B[a]P-7,8-dihydrodiol and B[c]Ph-3,4-dihydrodiol, B[g]C-11,12-dihydrodiol enantiomers are significantly bent out of plane. As a consequence, the (−)-R,R-stereoisomer was prevented from binding to the active site because of unfavorable interactions with F129, W227, or Y310. Additionally, LC/MS validated that the product of the reaction of B[g]C-11,12-dihydrodiol oxidation catalyzed by AKR1C9 was B[g]C-11,12-dione, which was trapped in vitro with the nucleophile 2-mercaptoethanol. The similarity between rates of trans-dihydrodiol oxidation by the rat and human liver specific AKRs (AKR1C9 and AKR1C4) implicate these enzymes in hepatocarcinogenesis in rats observed with the fjord-region PAH.</description><subject>Alanine - genetics</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Animals</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Chrysenes - chemistry</subject><subject>Chrysenes - metabolism</subject><subject>Circular Dichroism</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Indicators and Reagents</subject><subject>Kinetics</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Mass Spectrometry</subject><subject>Mercaptoethanol - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation - genetics</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Phenanthrenes - chemistry</subject><subject>Phenanthrenes - metabolism</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - genetics</subject><subject>Stereoisomerism</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><issn>0893-228X</issn><issn>1520-5010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFktFu0zAUhi0EYqVwwQug3ICYtIDtxHHKBdLWrYBWRLUOCQlNluOcNi6p3dnOtPKCvBYurcomIXFly-fT7__85yD0nOA3BFPyNtxyjLNiwB6gHmEUpwwT_BD1cDnIUkrLbwfoifcLjEnE-WN0QErKCCOkh36NFtbVqYO5tiY5AfPTfp9fqcatPRhICTkiNK11s66drbVtE2nqHaauVg0YaULjNmh2lN8HfTLtKh-cDOCTmXXJhQzJWN-AS07vcKfw5z6PUh6S18fnF2Q4OHyXTIPrVOicbJMT6fVWYhrAgVUNLLWKhYmDWXwwCp6iRzPZeni2O_vo6-jscvgxHX_58Gl4PE5lzmlI84yRGvOs5oXkJc9AFjEUPtjkUhKmeFVSXlEoMAc5w6yu6hw4qQkrClbJMuuj91vdVVctoVZgYoOtWDm9lG4trNTifsXoRsztjaB5jlmcRx-92gk4e92BD2KpvYK2lQZs5wXHOc4ZZf8FaZwuw3xj6XALKme9j4ns3RAsNvsh9vsR2Rd37f8ldwsRgXQLaB_gdl-X7ocoeMaZuJxMxeR8PJrSIRafI_9yy0vlxcJ2zsT0__Hxb6D4074</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Shultz, Carol A</creator><creator>Palackal, Nisha T</creator><creator>Mangal, Dipti</creator><creator>Harvey, Ronald G</creator><creator>Blair, Ian A</creator><creator>Penning, Trevor M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080301</creationdate><title>Fjord-region Benzo[g]chrysene-11,12-dihydrodiol and Benzo[c]phenanthrene-3,4-dihydrodiol as Substrates for Rat Liver Dihydrodiol Dehydrogenase (AKR1C9): Structural Basis for Stereochemical Preference</title><author>Shultz, Carol A ; Palackal, Nisha T ; Mangal, Dipti ; Harvey, Ronald G ; Blair, Ian A ; Penning, Trevor M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-4351d073d76a7873ea6011791027815c7b827b2e607eaf05dbd4e71d15665ba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alanine - genetics</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Animals</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Chrysenes - chemistry</topic><topic>Chrysenes - metabolism</topic><topic>Circular Dichroism</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Indicators and Reagents</topic><topic>Kinetics</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Mass Spectrometry</topic><topic>Mercaptoethanol - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation - genetics</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Phenanthrenes - chemistry</topic><topic>Phenanthrenes - metabolism</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - genetics</topic><topic>Stereoisomerism</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shultz, Carol A</creatorcontrib><creatorcontrib>Palackal, Nisha T</creatorcontrib><creatorcontrib>Mangal, Dipti</creatorcontrib><creatorcontrib>Harvey, Ronald G</creatorcontrib><creatorcontrib>Blair, Ian A</creatorcontrib><creatorcontrib>Penning, Trevor M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical research in toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shultz, Carol A</au><au>Palackal, Nisha T</au><au>Mangal, Dipti</au><au>Harvey, Ronald G</au><au>Blair, Ian A</au><au>Penning, Trevor M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fjord-region Benzo[g]chrysene-11,12-dihydrodiol and Benzo[c]phenanthrene-3,4-dihydrodiol as Substrates for Rat Liver Dihydrodiol Dehydrogenase (AKR1C9): Structural Basis for Stereochemical Preference</atitle><jtitle>Chemical research in toxicology</jtitle><addtitle>Chem. Res. Toxicol</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>21</volume><issue>3</issue><spage>668</spage><epage>677</epage><pages>668-677</pages><issn>0893-228X</issn><eissn>1520-5010</eissn><abstract>This study demonstrates that benzo[g]chrysene-11,12-dihydrodiol (B[g]C-11,12-dihydrodiol) derived from the fjord-region parent hydrocarbon B[g]C is oxidized by rat AKR1C9 with a k c a t/K m 100 times greater than that observed with the commonly studied bay-region benzo[a]pyrene-7,8-dihydrodiol (B[a]P-7,8-dihydrodiol). Conversely, despite its strikingly similar structure to B[g]C-11,12-dihydrodiol, benzo[c]phenanthrene-3,4-dihydrodiol (B[c]Ph-3,4-dihydrodiol) is consumed by AKR1C9 at sluggish rates comparable to those observed with B[a]P-7,8-dihydrodiol. CD spectroscopy revealed that only the (+)-B[g]C-11,12-dihydrodiol stereoisomer was oxidized, while AKR1C9 oxidized both stereoisomers of B[a]P-7,8-dihydrodiol and B[c]Ph-3,4-dihydrodiol. The (+)-S,S- and (−)-R,R-stereoisomers of B[g]C-11,12-dihydrodiol were purified by chiral RP-HPLC. The 11S,12S-stereoisomer was oxidized at the same rate as the racemate. The 11R,12R-stereoisomer did not act as an inhibitor to AKR1C9, indicating that the (−)-R,R-stereoisomer was excluded from the active site. To understand the basis of stereochemical preference, we screened alanine-scanning mutants of active site residues of AKR1C9. These studies revealed that in comparison to the wild type, F129A, W227A, and Y310A enabled the oxidation of both the B[g]C-11S,12S-dihydrodiol and the B[g]C-11R,12R-dihydrodiol. Molecular modeling revealed that unlike B[a]P-7,8-dihydrodiol and B[c]Ph-3,4-dihydrodiol, B[g]C-11,12-dihydrodiol enantiomers are significantly bent out of plane. As a consequence, the (−)-R,R-stereoisomer was prevented from binding to the active site because of unfavorable interactions with F129, W227, or Y310. Additionally, LC/MS validated that the product of the reaction of B[g]C-11,12-dihydrodiol oxidation catalyzed by AKR1C9 was B[g]C-11,12-dione, which was trapped in vitro with the nucleophile 2-mercaptoethanol. The similarity between rates of trans-dihydrodiol oxidation by the rat and human liver specific AKRs (AKR1C9 and AKR1C4) implicate these enzymes in hepatocarcinogenesis in rats observed with the fjord-region PAH.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>18251511</pmid><doi>10.1021/tx7003695</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-228X |
ispartof | Chemical research in toxicology, 2008-03, Vol.21 (3), p.668-677 |
issn | 0893-228X 1520-5010 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2440589 |
source | MEDLINE; ACS Publications |
subjects | Alanine - genetics Alcohol Oxidoreductases - metabolism Animals Chromatography, High Pressure Liquid Chrysenes - chemistry Chrysenes - metabolism Circular Dichroism Humans In Vitro Techniques Indicators and Reagents Kinetics Liver - enzymology Liver - metabolism Mass Spectrometry Mercaptoethanol - metabolism Models, Molecular Mutation - genetics Oxidoreductases - genetics Oxidoreductases - metabolism Phenanthrenes - chemistry Phenanthrenes - metabolism Rats Rats, Inbred F344 Recombinant Proteins - biosynthesis Recombinant Proteins - genetics Stereoisomerism Structure-Activity Relationship Substrate Specificity |
title | Fjord-region Benzo[g]chrysene-11,12-dihydrodiol and Benzo[c]phenanthrene-3,4-dihydrodiol as Substrates for Rat Liver Dihydrodiol Dehydrogenase (AKR1C9): Structural Basis for Stereochemical Preference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fjord-region%20Benzo%5Bg%5Dchrysene-11,12-dihydrodiol%20and%20Benzo%5Bc%5Dphenanthrene-3,4-dihydrodiol%20as%20Substrates%20for%20Rat%20Liver%20Dihydrodiol%20Dehydrogenase%20(AKR1C9):%20Structural%20Basis%20for%20Stereochemical%20Preference&rft.jtitle=Chemical%20research%20in%20toxicology&rft.au=Shultz,%20Carol%20A&rft.date=2008-03-01&rft.volume=21&rft.issue=3&rft.spage=668&rft.epage=677&rft.pages=668-677&rft.issn=0893-228X&rft.eissn=1520-5010&rft_id=info:doi/10.1021/tx7003695&rft_dat=%3Cproquest_pubme%3E70404525%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20895078&rft_id=info:pmid/18251511&rfr_iscdi=true |