Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development

Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-05, Vol.283 (18), p.12333-12342
Hauptverfasser: Adán, Cristina, Matsushima, Yuichi, Hernández-Sierra, Rosana, Marco-Ferreres, Raquel, Fernández-Moreno, Miguel Ángel, González-Vioque, Emiliano, Calleja, Manuel, Aragón, Juan J., Kaguni, Laurie S., Garesse, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12342
container_issue 18
container_start_page 12333
container_title The Journal of biological chemistry
container_volume 283
creator Adán, Cristina
Matsushima, Yuichi
Hernández-Sierra, Rosana
Marco-Ferreres, Raquel
Fernández-Moreno, Miguel Ángel
González-Vioque, Emiliano
Calleja, Manuel
Aragón, Juan J.
Kaguni, Laurie S.
Garesse, Rafael
description Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development.
doi_str_mv 10.1074/jbc.M801342200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2431005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820493366</els_id><sourcerecordid>20766435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-5d9705df4a97c47049d0798456b8d121212acb05fc59768e28d1c9bad2fe943c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EosvClSPkgLhlGX8ksS9I0HahUlccaCVuluNMdl0lcWpnF_Hv8ZIVhQNifLA08_idGb-EvKSwolCJd3e1XW0kUC4YA3hEFhQkz3lBvz0mCwBGc8UKeUaexXgHKYSiT8kZlRxkxcoFGTdu8nbnhyY402U3wQzRBjdOzg_Z2tjJh-wjy65idhkjDtMRalNug5Opfedstt4P9hfthuwi-OjHnetM1mNnBr81ccKQXeABOz_2SeA5edKaLuKL070kt-vLm_PP-fWXT1fnH65zW8hqyotGVVA0rTCqsqJKczdQKSmKspYNZcdjbA1FawtVlRJZylpVm4a1qAS3fEnez7rjvu6xsal1MJ0eg-tN-KG9cfrvyuB2eusPmglOAYok8PYkEPz9HuOkexctdmkt9PuoS0WFLAD-CzKoylLwo-JqBm36phiw_T0NBX10Uyc39YOb6cGrP3d4wE_2JeDNDOzcdvfdBdS1S25ir5nkCdOU8RRL8nrGWuO12QYX9e1XltoASKkAVCLkTGCy5OAw6GgdDhabJGon3Xj3ryF_AhFexPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20766435</pqid></control><display><type>article</type><title>Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Adán, Cristina ; Matsushima, Yuichi ; Hernández-Sierra, Rosana ; Marco-Ferreres, Raquel ; Fernández-Moreno, Miguel Ángel ; González-Vioque, Emiliano ; Calleja, Manuel ; Aragón, Juan J. ; Kaguni, Laurie S. ; Garesse, Rafael</creator><creatorcontrib>Adán, Cristina ; Matsushima, Yuichi ; Hernández-Sierra, Rosana ; Marco-Ferreres, Raquel ; Fernández-Moreno, Miguel Ángel ; González-Vioque, Emiliano ; Calleja, Manuel ; Aragón, Juan J. ; Kaguni, Laurie S. ; Garesse, Rafael</creatorcontrib><description>Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M801342200</identifier><identifier>PMID: 18308726</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - biosynthesis ; Animals ; Apoptosis ; Body Patterning ; Body Weight ; Cell Proliferation ; DNA, Mitochondrial - genetics ; Drosophila melanogaster ; Drosophila melanogaster - cytology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth &amp; development ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Energy Metabolism ; Gene Expression Regulation, Developmental ; Gene Silencing ; Glycolysis ; Larva - cytology ; Larva - growth &amp; development ; Longevity ; Mitochondria - metabolism ; Oxidative Phosphorylation ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transcription, Chromatin, and Epigenetics ; Transcription, Genetic ; Wings, Animal - cytology</subject><ispartof>The Journal of biological chemistry, 2008-05, Vol.283 (18), p.12333-12342</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-5d9705df4a97c47049d0798456b8d121212acb05fc59768e28d1c9bad2fe943c3</citedby><cites>FETCH-LOGICAL-c587t-5d9705df4a97c47049d0798456b8d121212acb05fc59768e28d1c9bad2fe943c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2431005/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2431005/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18308726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adán, Cristina</creatorcontrib><creatorcontrib>Matsushima, Yuichi</creatorcontrib><creatorcontrib>Hernández-Sierra, Rosana</creatorcontrib><creatorcontrib>Marco-Ferreres, Raquel</creatorcontrib><creatorcontrib>Fernández-Moreno, Miguel Ángel</creatorcontrib><creatorcontrib>González-Vioque, Emiliano</creatorcontrib><creatorcontrib>Calleja, Manuel</creatorcontrib><creatorcontrib>Aragón, Juan J.</creatorcontrib><creatorcontrib>Kaguni, Laurie S.</creatorcontrib><creatorcontrib>Garesse, Rafael</creatorcontrib><title>Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Body Patterning</subject><subject>Body Weight</subject><subject>Cell Proliferation</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth &amp; development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Energy Metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Silencing</subject><subject>Glycolysis</subject><subject>Larva - cytology</subject><subject>Larva - growth &amp; development</subject><subject>Longevity</subject><subject>Mitochondria - metabolism</subject><subject>Oxidative Phosphorylation</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transcription, Chromatin, and Epigenetics</subject><subject>Transcription, Genetic</subject><subject>Wings, Animal - cytology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EosvClSPkgLhlGX8ksS9I0HahUlccaCVuluNMdl0lcWpnF_Hv8ZIVhQNifLA08_idGb-EvKSwolCJd3e1XW0kUC4YA3hEFhQkz3lBvz0mCwBGc8UKeUaexXgHKYSiT8kZlRxkxcoFGTdu8nbnhyY402U3wQzRBjdOzg_Z2tjJh-wjy65idhkjDtMRalNug5Opfedstt4P9hfthuwi-OjHnetM1mNnBr81ccKQXeABOz_2SeA5edKaLuKL070kt-vLm_PP-fWXT1fnH65zW8hqyotGVVA0rTCqsqJKczdQKSmKspYNZcdjbA1FawtVlRJZylpVm4a1qAS3fEnez7rjvu6xsal1MJ0eg-tN-KG9cfrvyuB2eusPmglOAYok8PYkEPz9HuOkexctdmkt9PuoS0WFLAD-CzKoylLwo-JqBm36phiw_T0NBX10Uyc39YOb6cGrP3d4wE_2JeDNDOzcdvfdBdS1S25ir5nkCdOU8RRL8nrGWuO12QYX9e1XltoASKkAVCLkTGCy5OAw6GgdDhabJGon3Xj3ryF_AhFexPU</recordid><startdate>20080502</startdate><enddate>20080502</enddate><creator>Adán, Cristina</creator><creator>Matsushima, Yuichi</creator><creator>Hernández-Sierra, Rosana</creator><creator>Marco-Ferreres, Raquel</creator><creator>Fernández-Moreno, Miguel Ángel</creator><creator>González-Vioque, Emiliano</creator><creator>Calleja, Manuel</creator><creator>Aragón, Juan J.</creator><creator>Kaguni, Laurie S.</creator><creator>Garesse, Rafael</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080502</creationdate><title>Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development</title><author>Adán, Cristina ; Matsushima, Yuichi ; Hernández-Sierra, Rosana ; Marco-Ferreres, Raquel ; Fernández-Moreno, Miguel Ángel ; González-Vioque, Emiliano ; Calleja, Manuel ; Aragón, Juan J. ; Kaguni, Laurie S. ; Garesse, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-5d9705df4a97c47049d0798456b8d121212acb05fc59768e28d1c9bad2fe943c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Body Patterning</topic><topic>Body Weight</topic><topic>Cell Proliferation</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth &amp; development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Energy Metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Silencing</topic><topic>Glycolysis</topic><topic>Larva - cytology</topic><topic>Larva - growth &amp; development</topic><topic>Longevity</topic><topic>Mitochondria - metabolism</topic><topic>Oxidative Phosphorylation</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transcription, Chromatin, and Epigenetics</topic><topic>Transcription, Genetic</topic><topic>Wings, Animal - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adán, Cristina</creatorcontrib><creatorcontrib>Matsushima, Yuichi</creatorcontrib><creatorcontrib>Hernández-Sierra, Rosana</creatorcontrib><creatorcontrib>Marco-Ferreres, Raquel</creatorcontrib><creatorcontrib>Fernández-Moreno, Miguel Ángel</creatorcontrib><creatorcontrib>González-Vioque, Emiliano</creatorcontrib><creatorcontrib>Calleja, Manuel</creatorcontrib><creatorcontrib>Aragón, Juan J.</creatorcontrib><creatorcontrib>Kaguni, Laurie S.</creatorcontrib><creatorcontrib>Garesse, Rafael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adán, Cristina</au><au>Matsushima, Yuichi</au><au>Hernández-Sierra, Rosana</au><au>Marco-Ferreres, Raquel</au><au>Fernández-Moreno, Miguel Ángel</au><au>González-Vioque, Emiliano</au><au>Calleja, Manuel</au><au>Aragón, Juan J.</au><au>Kaguni, Laurie S.</au><au>Garesse, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-05-02</date><risdate>2008</risdate><volume>283</volume><issue>18</issue><spage>12333</spage><epage>12342</epage><pages>12333-12342</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18308726</pmid><doi>10.1074/jbc.M801342200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2008-05, Vol.283 (18), p.12333-12342
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2431005
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adenosine Triphosphate - biosynthesis
Animals
Apoptosis
Body Patterning
Body Weight
Cell Proliferation
DNA, Mitochondrial - genetics
Drosophila melanogaster
Drosophila melanogaster - cytology
Drosophila melanogaster - genetics
Drosophila melanogaster - growth & development
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Energy Metabolism
Gene Expression Regulation, Developmental
Gene Silencing
Glycolysis
Larva - cytology
Larva - growth & development
Longevity
Mitochondria - metabolism
Oxidative Phosphorylation
RNA, Messenger - genetics
RNA, Messenger - metabolism
Transcription, Chromatin, and Epigenetics
Transcription, Genetic
Wings, Animal - cytology
title Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Transcription%20Factor%20B2%20Is%20Essential%20for%20Metabolic%20Function%20in%20Drosophila%20melanogaster%20Development&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ad%C3%A1n,%20Cristina&rft.date=2008-05-02&rft.volume=283&rft.issue=18&rft.spage=12333&rft.epage=12342&rft.pages=12333-12342&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M801342200&rft_dat=%3Cproquest_pubme%3E20766435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20766435&rft_id=info:pmid/18308726&rft_els_id=S0021925820493366&rfr_iscdi=true