Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development
Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (T...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2008-05, Vol.283 (18), p.12333-12342 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12342 |
---|---|
container_issue | 18 |
container_start_page | 12333 |
container_title | The Journal of biological chemistry |
container_volume | 283 |
creator | Adán, Cristina Matsushima, Yuichi Hernández-Sierra, Rosana Marco-Ferreres, Raquel Fernández-Moreno, Miguel Ángel González-Vioque, Emiliano Calleja, Manuel Aragón, Juan J. Kaguni, Laurie S. Garesse, Rafael |
description | Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development. |
doi_str_mv | 10.1074/jbc.M801342200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2431005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820493366</els_id><sourcerecordid>20766435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-5d9705df4a97c47049d0798456b8d121212acb05fc59768e28d1c9bad2fe943c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EosvClSPkgLhlGX8ksS9I0HahUlccaCVuluNMdl0lcWpnF_Hv8ZIVhQNifLA08_idGb-EvKSwolCJd3e1XW0kUC4YA3hEFhQkz3lBvz0mCwBGc8UKeUaexXgHKYSiT8kZlRxkxcoFGTdu8nbnhyY402U3wQzRBjdOzg_Z2tjJh-wjy65idhkjDtMRalNug5Opfedstt4P9hfthuwi-OjHnetM1mNnBr81ccKQXeABOz_2SeA5edKaLuKL070kt-vLm_PP-fWXT1fnH65zW8hqyotGVVA0rTCqsqJKczdQKSmKspYNZcdjbA1FawtVlRJZylpVm4a1qAS3fEnez7rjvu6xsal1MJ0eg-tN-KG9cfrvyuB2eusPmglOAYok8PYkEPz9HuOkexctdmkt9PuoS0WFLAD-CzKoylLwo-JqBm36phiw_T0NBX10Uyc39YOb6cGrP3d4wE_2JeDNDOzcdvfdBdS1S25ir5nkCdOU8RRL8nrGWuO12QYX9e1XltoASKkAVCLkTGCy5OAw6GgdDhabJGon3Xj3ryF_AhFexPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20766435</pqid></control><display><type>article</type><title>Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Adán, Cristina ; Matsushima, Yuichi ; Hernández-Sierra, Rosana ; Marco-Ferreres, Raquel ; Fernández-Moreno, Miguel Ángel ; González-Vioque, Emiliano ; Calleja, Manuel ; Aragón, Juan J. ; Kaguni, Laurie S. ; Garesse, Rafael</creator><creatorcontrib>Adán, Cristina ; Matsushima, Yuichi ; Hernández-Sierra, Rosana ; Marco-Ferreres, Raquel ; Fernández-Moreno, Miguel Ángel ; González-Vioque, Emiliano ; Calleja, Manuel ; Aragón, Juan J. ; Kaguni, Laurie S. ; Garesse, Rafael</creatorcontrib><description>Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M801342200</identifier><identifier>PMID: 18308726</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - biosynthesis ; Animals ; Apoptosis ; Body Patterning ; Body Weight ; Cell Proliferation ; DNA, Mitochondrial - genetics ; Drosophila melanogaster ; Drosophila melanogaster - cytology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth & development ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Energy Metabolism ; Gene Expression Regulation, Developmental ; Gene Silencing ; Glycolysis ; Larva - cytology ; Larva - growth & development ; Longevity ; Mitochondria - metabolism ; Oxidative Phosphorylation ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transcription, Chromatin, and Epigenetics ; Transcription, Genetic ; Wings, Animal - cytology</subject><ispartof>The Journal of biological chemistry, 2008-05, Vol.283 (18), p.12333-12342</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-5d9705df4a97c47049d0798456b8d121212acb05fc59768e28d1c9bad2fe943c3</citedby><cites>FETCH-LOGICAL-c587t-5d9705df4a97c47049d0798456b8d121212acb05fc59768e28d1c9bad2fe943c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2431005/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2431005/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18308726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adán, Cristina</creatorcontrib><creatorcontrib>Matsushima, Yuichi</creatorcontrib><creatorcontrib>Hernández-Sierra, Rosana</creatorcontrib><creatorcontrib>Marco-Ferreres, Raquel</creatorcontrib><creatorcontrib>Fernández-Moreno, Miguel Ángel</creatorcontrib><creatorcontrib>González-Vioque, Emiliano</creatorcontrib><creatorcontrib>Calleja, Manuel</creatorcontrib><creatorcontrib>Aragón, Juan J.</creatorcontrib><creatorcontrib>Kaguni, Laurie S.</creatorcontrib><creatorcontrib>Garesse, Rafael</creatorcontrib><title>Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Body Patterning</subject><subject>Body Weight</subject><subject>Cell Proliferation</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth & development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Energy Metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Silencing</subject><subject>Glycolysis</subject><subject>Larva - cytology</subject><subject>Larva - growth & development</subject><subject>Longevity</subject><subject>Mitochondria - metabolism</subject><subject>Oxidative Phosphorylation</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transcription, Chromatin, and Epigenetics</subject><subject>Transcription, Genetic</subject><subject>Wings, Animal - cytology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EosvClSPkgLhlGX8ksS9I0HahUlccaCVuluNMdl0lcWpnF_Hv8ZIVhQNifLA08_idGb-EvKSwolCJd3e1XW0kUC4YA3hEFhQkz3lBvz0mCwBGc8UKeUaexXgHKYSiT8kZlRxkxcoFGTdu8nbnhyY402U3wQzRBjdOzg_Z2tjJh-wjy65idhkjDtMRalNug5Opfedstt4P9hfthuwi-OjHnetM1mNnBr81ccKQXeABOz_2SeA5edKaLuKL070kt-vLm_PP-fWXT1fnH65zW8hqyotGVVA0rTCqsqJKczdQKSmKspYNZcdjbA1FawtVlRJZylpVm4a1qAS3fEnez7rjvu6xsal1MJ0eg-tN-KG9cfrvyuB2eusPmglOAYok8PYkEPz9HuOkexctdmkt9PuoS0WFLAD-CzKoylLwo-JqBm36phiw_T0NBX10Uyc39YOb6cGrP3d4wE_2JeDNDOzcdvfdBdS1S25ir5nkCdOU8RRL8nrGWuO12QYX9e1XltoASKkAVCLkTGCy5OAw6GgdDhabJGon3Xj3ryF_AhFexPU</recordid><startdate>20080502</startdate><enddate>20080502</enddate><creator>Adán, Cristina</creator><creator>Matsushima, Yuichi</creator><creator>Hernández-Sierra, Rosana</creator><creator>Marco-Ferreres, Raquel</creator><creator>Fernández-Moreno, Miguel Ángel</creator><creator>González-Vioque, Emiliano</creator><creator>Calleja, Manuel</creator><creator>Aragón, Juan J.</creator><creator>Kaguni, Laurie S.</creator><creator>Garesse, Rafael</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080502</creationdate><title>Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development</title><author>Adán, Cristina ; Matsushima, Yuichi ; Hernández-Sierra, Rosana ; Marco-Ferreres, Raquel ; Fernández-Moreno, Miguel Ángel ; González-Vioque, Emiliano ; Calleja, Manuel ; Aragón, Juan J. ; Kaguni, Laurie S. ; Garesse, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-5d9705df4a97c47049d0798456b8d121212acb05fc59768e28d1c9bad2fe943c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Body Patterning</topic><topic>Body Weight</topic><topic>Cell Proliferation</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth & development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Energy Metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Silencing</topic><topic>Glycolysis</topic><topic>Larva - cytology</topic><topic>Larva - growth & development</topic><topic>Longevity</topic><topic>Mitochondria - metabolism</topic><topic>Oxidative Phosphorylation</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transcription, Chromatin, and Epigenetics</topic><topic>Transcription, Genetic</topic><topic>Wings, Animal - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adán, Cristina</creatorcontrib><creatorcontrib>Matsushima, Yuichi</creatorcontrib><creatorcontrib>Hernández-Sierra, Rosana</creatorcontrib><creatorcontrib>Marco-Ferreres, Raquel</creatorcontrib><creatorcontrib>Fernández-Moreno, Miguel Ángel</creatorcontrib><creatorcontrib>González-Vioque, Emiliano</creatorcontrib><creatorcontrib>Calleja, Manuel</creatorcontrib><creatorcontrib>Aragón, Juan J.</creatorcontrib><creatorcontrib>Kaguni, Laurie S.</creatorcontrib><creatorcontrib>Garesse, Rafael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adán, Cristina</au><au>Matsushima, Yuichi</au><au>Hernández-Sierra, Rosana</au><au>Marco-Ferreres, Raquel</au><au>Fernández-Moreno, Miguel Ángel</au><au>González-Vioque, Emiliano</au><au>Calleja, Manuel</au><au>Aragón, Juan J.</au><au>Kaguni, Laurie S.</au><au>Garesse, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-05-02</date><risdate>2008</risdate><volume>283</volume><issue>18</issue><spage>12333</spage><epage>12342</epage><pages>12333-12342</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval development. Molecular analysis demonstrates that TF2BM is essential for mtDNA transcription during Drosophila development and is not redundant with TFB1M. The impairment of mtDNA transcription causes a dramatic decrease in oxidative phosphorylation and mitochondrial ATP synthesis in the long-lived larvae, and a metabolic shift to glycolysis, which partially restores ATP levels and elicits a compensatory response at the nuclear level that increases mitochondrial mass. At the cellular level, the mitochondrial dysfunction induced by TFB2M knockdown causes a severe reduction in cell proliferation without affecting cell growth, and increases the level of apoptosis. In contrast, cell differentiation and morphogenesis are largely unaffected. Our data demonstrate the essential role of TFB2M in mtDNA transcription in a multicellular organism, and reveal the complex cellular, biochemical, and molecular responses induced by impairment of oxidative phosphorylation during Drosophila development.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18308726</pmid><doi>10.1074/jbc.M801342200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2008-05, Vol.283 (18), p.12333-12342 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2431005 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adenosine Triphosphate - biosynthesis Animals Apoptosis Body Patterning Body Weight Cell Proliferation DNA, Mitochondrial - genetics Drosophila melanogaster Drosophila melanogaster - cytology Drosophila melanogaster - genetics Drosophila melanogaster - growth & development Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Energy Metabolism Gene Expression Regulation, Developmental Gene Silencing Glycolysis Larva - cytology Larva - growth & development Longevity Mitochondria - metabolism Oxidative Phosphorylation RNA, Messenger - genetics RNA, Messenger - metabolism Transcription, Chromatin, and Epigenetics Transcription, Genetic Wings, Animal - cytology |
title | Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20Transcription%20Factor%20B2%20Is%20Essential%20for%20Metabolic%20Function%20in%20Drosophila%20melanogaster%20Development&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Ad%C3%A1n,%20Cristina&rft.date=2008-05-02&rft.volume=283&rft.issue=18&rft.spage=12333&rft.epage=12342&rft.pages=12333-12342&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M801342200&rft_dat=%3Cproquest_pubme%3E20766435%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20766435&rft_id=info:pmid/18308726&rft_els_id=S0021925820493366&rfr_iscdi=true |