Translating network models to parallel hardware in NEURON

The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2008-04, Vol.169 (2), p.425-455
Hauptverfasser: Hines, M.L., Carnevale, N.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 2
container_start_page 425
container_title Journal of neuroscience methods
container_volume 169
creator Hines, M.L.
Carnevale, N.T.
description The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then run their code without modification on a parallel supercomputer.
doi_str_mv 10.1016/j.jneumeth.2007.09.010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027007004608</els_id><sourcerecordid>70442491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-bd1042ff4e5d0cf72eb62907557255e08f808be25056397d2516b16c43f41a943</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi1EBVvav4By6i3p2PFHfEEgRGklBBICiZvlOBPW28Te2llQ_z1Bu23h1NMc5nnfGT2EHFOoKFD5dVWtAm5GnJYVA1AV6Aoo7JEFbRQrpWoe9sliBkUJTMEh-ZjzCgC4BnlADqnSWlHJFkTfJRvyYCcfHouA03NMP4sxdjjkYorF2iY7DDgUS5u6Z5uw8KG4vri_vbn-RD70dsj4eTePyP23i7vz7-XVzeWP87Or0olaTGXbUeCs7zmKDlyvGLaSaVBCKCYEQtM30LTIBAhZa9UxQWVLpeN1z6nVvD4iJ9ve9aYdsXMYpvkns05-tOm3idab95vgl-YxPhnGa9AM5oIvu4IUf20wT2b02eEw2IBxk40CzhnXdAblFnQp5pyw_3uEgnm1blbmj3Xzat2ANrP1OXj89sV_sZ3mGTjdArNWfPKYTHYeg8POJ3ST6aL_340XsuCXCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70442491</pqid></control><display><type>article</type><title>Translating network models to parallel hardware in NEURON</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hines, M.L. ; Carnevale, N.T.</creator><creatorcontrib>Hines, M.L. ; Carnevale, N.T.</creatorcontrib><description>The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then run their code without modification on a parallel supercomputer.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2007.09.010</identifier><identifier>PMID: 17997162</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Computational neuroscience ; Computer Simulation ; Computer Systems ; Models, Neurological ; Multiprocessor ; Network model ; Neural Networks (Computer) ; NEURON simulation environment ; Neurons - physiology ; Parallel computation ; Parallel supercomputer ; Programming Languages ; Serial computation ; Simulation ; Software</subject><ispartof>Journal of neuroscience methods, 2008-04, Vol.169 (2), p.425-455</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-bd1042ff4e5d0cf72eb62907557255e08f808be25056397d2516b16c43f41a943</citedby><cites>FETCH-LOGICAL-c535t-bd1042ff4e5d0cf72eb62907557255e08f808be25056397d2516b16c43f41a943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jneumeth.2007.09.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17997162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hines, M.L.</creatorcontrib><creatorcontrib>Carnevale, N.T.</creatorcontrib><title>Translating network models to parallel hardware in NEURON</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then run their code without modification on a parallel supercomputer.</description><subject>Computational neuroscience</subject><subject>Computer Simulation</subject><subject>Computer Systems</subject><subject>Models, Neurological</subject><subject>Multiprocessor</subject><subject>Network model</subject><subject>Neural Networks (Computer)</subject><subject>NEURON simulation environment</subject><subject>Neurons - physiology</subject><subject>Parallel computation</subject><subject>Parallel supercomputer</subject><subject>Programming Languages</subject><subject>Serial computation</subject><subject>Simulation</subject><subject>Software</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhi1EBVvav4By6i3p2PFHfEEgRGklBBICiZvlOBPW28Te2llQ_z1Bu23h1NMc5nnfGT2EHFOoKFD5dVWtAm5GnJYVA1AV6Aoo7JEFbRQrpWoe9sliBkUJTMEh-ZjzCgC4BnlADqnSWlHJFkTfJRvyYCcfHouA03NMP4sxdjjkYorF2iY7DDgUS5u6Z5uw8KG4vri_vbn-RD70dsj4eTePyP23i7vz7-XVzeWP87Or0olaTGXbUeCs7zmKDlyvGLaSaVBCKCYEQtM30LTIBAhZa9UxQWVLpeN1z6nVvD4iJ9ve9aYdsXMYpvkns05-tOm3idab95vgl-YxPhnGa9AM5oIvu4IUf20wT2b02eEw2IBxk40CzhnXdAblFnQp5pyw_3uEgnm1blbmj3Xzat2ANrP1OXj89sV_sZ3mGTjdArNWfPKYTHYeg8POJ3ST6aL_340XsuCXCQ</recordid><startdate>20080430</startdate><enddate>20080430</enddate><creator>Hines, M.L.</creator><creator>Carnevale, N.T.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080430</creationdate><title>Translating network models to parallel hardware in NEURON</title><author>Hines, M.L. ; Carnevale, N.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-bd1042ff4e5d0cf72eb62907557255e08f808be25056397d2516b16c43f41a943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational neuroscience</topic><topic>Computer Simulation</topic><topic>Computer Systems</topic><topic>Models, Neurological</topic><topic>Multiprocessor</topic><topic>Network model</topic><topic>Neural Networks (Computer)</topic><topic>NEURON simulation environment</topic><topic>Neurons - physiology</topic><topic>Parallel computation</topic><topic>Parallel supercomputer</topic><topic>Programming Languages</topic><topic>Serial computation</topic><topic>Simulation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hines, M.L.</creatorcontrib><creatorcontrib>Carnevale, N.T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hines, M.L.</au><au>Carnevale, N.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translating network models to parallel hardware in NEURON</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2008-04-30</date><risdate>2008</risdate><volume>169</volume><issue>2</issue><spage>425</spage><epage>455</epage><pages>425-455</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then run their code without modification on a parallel supercomputer.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17997162</pmid><doi>10.1016/j.jneumeth.2007.09.010</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2008-04, Vol.169 (2), p.425-455
issn 0165-0270
1872-678X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430920
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Computational neuroscience
Computer Simulation
Computer Systems
Models, Neurological
Multiprocessor
Network model
Neural Networks (Computer)
NEURON simulation environment
Neurons - physiology
Parallel computation
Parallel supercomputer
Programming Languages
Serial computation
Simulation
Software
title Translating network models to parallel hardware in NEURON
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translating%20network%20models%20to%20parallel%20hardware%20in%20NEURON&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Hines,%20M.L.&rft.date=2008-04-30&rft.volume=169&rft.issue=2&rft.spage=425&rft.epage=455&rft.pages=425-455&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2007.09.010&rft_dat=%3Cproquest_pubme%3E70442491%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70442491&rft_id=info:pmid/17997162&rft_els_id=S0165027007004608&rfr_iscdi=true