Translating network models to parallel hardware in NEURON
The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical q...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience methods 2008-04, Vol.169 (2), p.425-455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 2 |
container_start_page | 425 |
container_title | Journal of neuroscience methods |
container_volume | 169 |
creator | Hines, M.L. Carnevale, N.T. |
description | The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then run their code without modification on a parallel supercomputer. |
doi_str_mv | 10.1016/j.jneumeth.2007.09.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027007004608</els_id><sourcerecordid>70442491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-bd1042ff4e5d0cf72eb62907557255e08f808be25056397d2516b16c43f41a943</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi1EBVvav4By6i3p2PFHfEEgRGklBBICiZvlOBPW28Te2llQ_z1Bu23h1NMc5nnfGT2EHFOoKFD5dVWtAm5GnJYVA1AV6Aoo7JEFbRQrpWoe9sliBkUJTMEh-ZjzCgC4BnlADqnSWlHJFkTfJRvyYCcfHouA03NMP4sxdjjkYorF2iY7DDgUS5u6Z5uw8KG4vri_vbn-RD70dsj4eTePyP23i7vz7-XVzeWP87Or0olaTGXbUeCs7zmKDlyvGLaSaVBCKCYEQtM30LTIBAhZa9UxQWVLpeN1z6nVvD4iJ9ve9aYdsXMYpvkns05-tOm3idab95vgl-YxPhnGa9AM5oIvu4IUf20wT2b02eEw2IBxk40CzhnXdAblFnQp5pyw_3uEgnm1blbmj3Xzat2ANrP1OXj89sV_sZ3mGTjdArNWfPKYTHYeg8POJ3ST6aL_340XsuCXCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70442491</pqid></control><display><type>article</type><title>Translating network models to parallel hardware in NEURON</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hines, M.L. ; Carnevale, N.T.</creator><creatorcontrib>Hines, M.L. ; Carnevale, N.T.</creatorcontrib><description>The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then run their code without modification on a parallel supercomputer.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/j.jneumeth.2007.09.010</identifier><identifier>PMID: 17997162</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Computational neuroscience ; Computer Simulation ; Computer Systems ; Models, Neurological ; Multiprocessor ; Network model ; Neural Networks (Computer) ; NEURON simulation environment ; Neurons - physiology ; Parallel computation ; Parallel supercomputer ; Programming Languages ; Serial computation ; Simulation ; Software</subject><ispartof>Journal of neuroscience methods, 2008-04, Vol.169 (2), p.425-455</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-bd1042ff4e5d0cf72eb62907557255e08f808be25056397d2516b16c43f41a943</citedby><cites>FETCH-LOGICAL-c535t-bd1042ff4e5d0cf72eb62907557255e08f808be25056397d2516b16c43f41a943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jneumeth.2007.09.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17997162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hines, M.L.</creatorcontrib><creatorcontrib>Carnevale, N.T.</creatorcontrib><title>Translating network models to parallel hardware in NEURON</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then run their code without modification on a parallel supercomputer.</description><subject>Computational neuroscience</subject><subject>Computer Simulation</subject><subject>Computer Systems</subject><subject>Models, Neurological</subject><subject>Multiprocessor</subject><subject>Network model</subject><subject>Neural Networks (Computer)</subject><subject>NEURON simulation environment</subject><subject>Neurons - physiology</subject><subject>Parallel computation</subject><subject>Parallel supercomputer</subject><subject>Programming Languages</subject><subject>Serial computation</subject><subject>Simulation</subject><subject>Software</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhi1EBVvav4By6i3p2PFHfEEgRGklBBICiZvlOBPW28Te2llQ_z1Bu23h1NMc5nnfGT2EHFOoKFD5dVWtAm5GnJYVA1AV6Aoo7JEFbRQrpWoe9sliBkUJTMEh-ZjzCgC4BnlADqnSWlHJFkTfJRvyYCcfHouA03NMP4sxdjjkYorF2iY7DDgUS5u6Z5uw8KG4vri_vbn-RD70dsj4eTePyP23i7vz7-XVzeWP87Or0olaTGXbUeCs7zmKDlyvGLaSaVBCKCYEQtM30LTIBAhZa9UxQWVLpeN1z6nVvD4iJ9ve9aYdsXMYpvkns05-tOm3idab95vgl-YxPhnGa9AM5oIvu4IUf20wT2b02eEw2IBxk40CzhnXdAblFnQp5pyw_3uEgnm1blbmj3Xzat2ANrP1OXj89sV_sZ3mGTjdArNWfPKYTHYeg8POJ3ST6aL_340XsuCXCQ</recordid><startdate>20080430</startdate><enddate>20080430</enddate><creator>Hines, M.L.</creator><creator>Carnevale, N.T.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080430</creationdate><title>Translating network models to parallel hardware in NEURON</title><author>Hines, M.L. ; Carnevale, N.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-bd1042ff4e5d0cf72eb62907557255e08f808be25056397d2516b16c43f41a943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational neuroscience</topic><topic>Computer Simulation</topic><topic>Computer Systems</topic><topic>Models, Neurological</topic><topic>Multiprocessor</topic><topic>Network model</topic><topic>Neural Networks (Computer)</topic><topic>NEURON simulation environment</topic><topic>Neurons - physiology</topic><topic>Parallel computation</topic><topic>Parallel supercomputer</topic><topic>Programming Languages</topic><topic>Serial computation</topic><topic>Simulation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hines, M.L.</creatorcontrib><creatorcontrib>Carnevale, N.T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hines, M.L.</au><au>Carnevale, N.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translating network models to parallel hardware in NEURON</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2008-04-30</date><risdate>2008</risdate><volume>169</volume><issue>2</issue><spage>425</spage><epage>455</epage><pages>425-455</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><abstract>The increasing complexity of network models poses a growing computational burden. At the same time, computational neuroscientists are finding it easier to access parallel hardware, such as multiprocessor personal computers, workstation clusters, and massively parallel supercomputers. The practical question is how to move a working network model from a single processor to parallel hardware. Here we show how to make this transition for models implemented with NEURON, in such a way that the final result will run and produce numerically identical results on either serial or parallel hardware. This allows users to develop and debug models on readily available local resources, then run their code without modification on a parallel supercomputer.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17997162</pmid><doi>10.1016/j.jneumeth.2007.09.010</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0270 |
ispartof | Journal of neuroscience methods, 2008-04, Vol.169 (2), p.425-455 |
issn | 0165-0270 1872-678X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430920 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Computational neuroscience Computer Simulation Computer Systems Models, Neurological Multiprocessor Network model Neural Networks (Computer) NEURON simulation environment Neurons - physiology Parallel computation Parallel supercomputer Programming Languages Serial computation Simulation Software |
title | Translating network models to parallel hardware in NEURON |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translating%20network%20models%20to%20parallel%20hardware%20in%20NEURON&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Hines,%20M.L.&rft.date=2008-04-30&rft.volume=169&rft.issue=2&rft.spage=425&rft.epage=455&rft.pages=425-455&rft.issn=0165-0270&rft.eissn=1872-678X&rft_id=info:doi/10.1016/j.jneumeth.2007.09.010&rft_dat=%3Cproquest_pubme%3E70442491%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70442491&rft_id=info:pmid/17997162&rft_els_id=S0165027007004608&rfr_iscdi=true |