Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues

Abstract Uptake of environmental carbon monoxide (CO) via the lungs raises the CO content of blood and of myoglobin (Mb)-containing tissues, but the blood-to-tissue diffusion coefficient for CO (DmCO) and tissue CO content are not easily measurable in humans. We used a multicompartment mathematical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory physiology & neurobiology 2008-04, Vol.161 (2), p.142-159
Hauptverfasser: Bruce, Eugene N, Bruce, Margaret C, Erupaka, Kinnera
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 142
container_title Respiratory physiology & neurobiology
container_volume 161
creator Bruce, Eugene N
Bruce, Margaret C
Erupaka, Kinnera
description Abstract Uptake of environmental carbon monoxide (CO) via the lungs raises the CO content of blood and of myoglobin (Mb)-containing tissues, but the blood-to-tissue diffusion coefficient for CO (DmCO) and tissue CO content are not easily measurable in humans. We used a multicompartment mathematical model to predict the effects of different values of DmCO on the time courses and magnitudes of CO content of blood and Mb-containing tissues when various published experimental studies were simulated. The model enhances our earlier model by adding mass balance equations for oxygen and by dividing the muscle compartment into two subcompartments. We found that several published experimental findings are compatible with either fast or slow rates of blood–tissue transfer of CO, whereas others are only compatible with slow rates of tissue uptake of CO. We conclude that slow uptake is most consistent with all of the experimental data. Slow uptake of CO by tissue is primarily due to the very small blood-to-tissue partial pressure gradients for CO.
doi_str_mv 10.1016/j.resp.2008.01.004
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569904808000207</els_id><sourcerecordid>S1569904808000207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-d5efa1269cdea9055e9d3b3eeec02ae958d293f846c8d1beda6dac286fb6c4ee3</originalsourceid><addsrcrecordid>eNp9kk9r3DAQxUVpadK0X6CH4EuOdkaS5ZUgBELoPwikkJYehSyNG2281iLZS_bbR84uaZJDT3ow780MPw0hnylUFGhzuqwipnXFAGQFtAKo35BDKheypIKqt1mLRpUKanlAPqS0BKALuuDvyQGVnHKl-CH58zOi83b0YShCV4y3WEQz4qyn9WjuHpU1sc31VRjCvXdYdDGsirYPwRXttsD7MZqNSXbqTSxGn9KE6SN515k-4af9e0R-f_3y6_J7eXX97cflxVVpBZdj6QR2hrJGWYdGgRCoHG85IlpgBpWQjineybqx0tEWnWmcsUw2XdvYGpEfkfNd3_XUrtBZHPIyvV5HvzJxq4Px-mVl8Lf6b9hoVnOgAnIDtmtgY0gpYveUpaBnzHqpZ8x6xqyB6ow5h46fT_0X2XPNhpO9IXMxfRfNYH168jHgrBYNy76znQ8zo43HqJP1ONj8JxHtqF3w_9_j_FXc9n7weeIdbjEtwxSHTF9TnZgGfTMfxHwPIAGAwYI_AOcdtE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bruce, Eugene N ; Bruce, Margaret C ; Erupaka, Kinnera</creator><creatorcontrib>Bruce, Eugene N ; Bruce, Margaret C ; Erupaka, Kinnera</creatorcontrib><description>Abstract Uptake of environmental carbon monoxide (CO) via the lungs raises the CO content of blood and of myoglobin (Mb)-containing tissues, but the blood-to-tissue diffusion coefficient for CO (DmCO) and tissue CO content are not easily measurable in humans. We used a multicompartment mathematical model to predict the effects of different values of DmCO on the time courses and magnitudes of CO content of blood and Mb-containing tissues when various published experimental studies were simulated. The model enhances our earlier model by adding mass balance equations for oxygen and by dividing the muscle compartment into two subcompartments. We found that several published experimental findings are compatible with either fast or slow rates of blood–tissue transfer of CO, whereas others are only compatible with slow rates of tissue uptake of CO. We conclude that slow uptake is most consistent with all of the experimental data. Slow uptake of CO by tissue is primarily due to the very small blood-to-tissue partial pressure gradients for CO.</description><identifier>ISSN: 1569-9048</identifier><identifier>EISSN: 1878-1519</identifier><identifier>DOI: 10.1016/j.resp.2008.01.004</identifier><identifier>PMID: 18313993</identifier><language>eng</language><publisher>Amsterdarm: Elsevier B.V</publisher><subject>Algorithms ; Animals ; Biological and medical sciences ; Blood - metabolism ; Body Fluid Compartments - physiology ; Carbon Monoxide - metabolism ; Computer Simulation ; Diffusion coefficient ; Fundamental and applied biological sciences. Psychology ; Hemoglobin ; Humans ; Hyperoxia ; Mathematical model ; Medical Education ; Models, Biological ; Muscles - metabolism ; Myoglobin ; Oxygen Consumption - physiology ; Pulmonary Gas Exchange - physiology ; Pulmonary/Respiratory ; Rebreathing ; Tissue Distribution ; Vertebrates: respiratory system</subject><ispartof>Respiratory physiology &amp; neurobiology, 2008-04, Vol.161 (2), p.142-159</ispartof><rights>Elsevier B.V.</rights><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-d5efa1269cdea9055e9d3b3eeec02ae958d293f846c8d1beda6dac286fb6c4ee3</citedby><cites>FETCH-LOGICAL-c538t-d5efa1269cdea9055e9d3b3eeec02ae958d293f846c8d1beda6dac286fb6c4ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1569904808000207$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20324562$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18313993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruce, Eugene N</creatorcontrib><creatorcontrib>Bruce, Margaret C</creatorcontrib><creatorcontrib>Erupaka, Kinnera</creatorcontrib><title>Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues</title><title>Respiratory physiology &amp; neurobiology</title><addtitle>Respir Physiol Neurobiol</addtitle><description>Abstract Uptake of environmental carbon monoxide (CO) via the lungs raises the CO content of blood and of myoglobin (Mb)-containing tissues, but the blood-to-tissue diffusion coefficient for CO (DmCO) and tissue CO content are not easily measurable in humans. We used a multicompartment mathematical model to predict the effects of different values of DmCO on the time courses and magnitudes of CO content of blood and Mb-containing tissues when various published experimental studies were simulated. The model enhances our earlier model by adding mass balance equations for oxygen and by dividing the muscle compartment into two subcompartments. We found that several published experimental findings are compatible with either fast or slow rates of blood–tissue transfer of CO, whereas others are only compatible with slow rates of tissue uptake of CO. We conclude that slow uptake is most consistent with all of the experimental data. Slow uptake of CO by tissue is primarily due to the very small blood-to-tissue partial pressure gradients for CO.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood - metabolism</subject><subject>Body Fluid Compartments - physiology</subject><subject>Carbon Monoxide - metabolism</subject><subject>Computer Simulation</subject><subject>Diffusion coefficient</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Hyperoxia</subject><subject>Mathematical model</subject><subject>Medical Education</subject><subject>Models, Biological</subject><subject>Muscles - metabolism</subject><subject>Myoglobin</subject><subject>Oxygen Consumption - physiology</subject><subject>Pulmonary Gas Exchange - physiology</subject><subject>Pulmonary/Respiratory</subject><subject>Rebreathing</subject><subject>Tissue Distribution</subject><subject>Vertebrates: respiratory system</subject><issn>1569-9048</issn><issn>1878-1519</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk9r3DAQxUVpadK0X6CH4EuOdkaS5ZUgBELoPwikkJYehSyNG2281iLZS_bbR84uaZJDT3ow780MPw0hnylUFGhzuqwipnXFAGQFtAKo35BDKheypIKqt1mLRpUKanlAPqS0BKALuuDvyQGVnHKl-CH58zOi83b0YShCV4y3WEQz4qyn9WjuHpU1sc31VRjCvXdYdDGsirYPwRXttsD7MZqNSXbqTSxGn9KE6SN515k-4af9e0R-f_3y6_J7eXX97cflxVVpBZdj6QR2hrJGWYdGgRCoHG85IlpgBpWQjineybqx0tEWnWmcsUw2XdvYGpEfkfNd3_XUrtBZHPIyvV5HvzJxq4Px-mVl8Lf6b9hoVnOgAnIDtmtgY0gpYveUpaBnzHqpZ8x6xqyB6ow5h46fT_0X2XPNhpO9IXMxfRfNYH168jHgrBYNy76znQ8zo43HqJP1ONj8JxHtqF3w_9_j_FXc9n7weeIdbjEtwxSHTF9TnZgGfTMfxHwPIAGAwYI_AOcdtE0</recordid><startdate>20080430</startdate><enddate>20080430</enddate><creator>Bruce, Eugene N</creator><creator>Bruce, Margaret C</creator><creator>Erupaka, Kinnera</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20080430</creationdate><title>Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues</title><author>Bruce, Eugene N ; Bruce, Margaret C ; Erupaka, Kinnera</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-d5efa1269cdea9055e9d3b3eeec02ae958d293f846c8d1beda6dac286fb6c4ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood - metabolism</topic><topic>Body Fluid Compartments - physiology</topic><topic>Carbon Monoxide - metabolism</topic><topic>Computer Simulation</topic><topic>Diffusion coefficient</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Hyperoxia</topic><topic>Mathematical model</topic><topic>Medical Education</topic><topic>Models, Biological</topic><topic>Muscles - metabolism</topic><topic>Myoglobin</topic><topic>Oxygen Consumption - physiology</topic><topic>Pulmonary Gas Exchange - physiology</topic><topic>Pulmonary/Respiratory</topic><topic>Rebreathing</topic><topic>Tissue Distribution</topic><topic>Vertebrates: respiratory system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruce, Eugene N</creatorcontrib><creatorcontrib>Bruce, Margaret C</creatorcontrib><creatorcontrib>Erupaka, Kinnera</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Respiratory physiology &amp; neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruce, Eugene N</au><au>Bruce, Margaret C</au><au>Erupaka, Kinnera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues</atitle><jtitle>Respiratory physiology &amp; neurobiology</jtitle><addtitle>Respir Physiol Neurobiol</addtitle><date>2008-04-30</date><risdate>2008</risdate><volume>161</volume><issue>2</issue><spage>142</spage><epage>159</epage><pages>142-159</pages><issn>1569-9048</issn><eissn>1878-1519</eissn><abstract>Abstract Uptake of environmental carbon monoxide (CO) via the lungs raises the CO content of blood and of myoglobin (Mb)-containing tissues, but the blood-to-tissue diffusion coefficient for CO (DmCO) and tissue CO content are not easily measurable in humans. We used a multicompartment mathematical model to predict the effects of different values of DmCO on the time courses and magnitudes of CO content of blood and Mb-containing tissues when various published experimental studies were simulated. The model enhances our earlier model by adding mass balance equations for oxygen and by dividing the muscle compartment into two subcompartments. We found that several published experimental findings are compatible with either fast or slow rates of blood–tissue transfer of CO, whereas others are only compatible with slow rates of tissue uptake of CO. We conclude that slow uptake is most consistent with all of the experimental data. Slow uptake of CO by tissue is primarily due to the very small blood-to-tissue partial pressure gradients for CO.</abstract><cop>Amsterdarm</cop><pub>Elsevier B.V</pub><pmid>18313993</pmid><doi>10.1016/j.resp.2008.01.004</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1569-9048
ispartof Respiratory physiology & neurobiology, 2008-04, Vol.161 (2), p.142-159
issn 1569-9048
1878-1519
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2430150
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Animals
Biological and medical sciences
Blood - metabolism
Body Fluid Compartments - physiology
Carbon Monoxide - metabolism
Computer Simulation
Diffusion coefficient
Fundamental and applied biological sciences. Psychology
Hemoglobin
Humans
Hyperoxia
Mathematical model
Medical Education
Models, Biological
Muscles - metabolism
Myoglobin
Oxygen Consumption - physiology
Pulmonary Gas Exchange - physiology
Pulmonary/Respiratory
Rebreathing
Tissue Distribution
Vertebrates: respiratory system
title Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20rate%20of%20uptake%20of%20carbon%20monoxide%20from%20blood%20by%20extravascular%20tissues&rft.jtitle=Respiratory%20physiology%20&%20neurobiology&rft.au=Bruce,%20Eugene%20N&rft.date=2008-04-30&rft.volume=161&rft.issue=2&rft.spage=142&rft.epage=159&rft.pages=142-159&rft.issn=1569-9048&rft.eissn=1878-1519&rft_id=info:doi/10.1016/j.resp.2008.01.004&rft_dat=%3Celsevier_pubme%3ES1569904808000207%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18313993&rft_els_id=S1569904808000207&rfr_iscdi=true