Early Stages of Amyloid Fibril Formation Studied by Liquid-State NMR: The Peptide Hormone Glucagon

The 29-residue peptide hormone glucagon forms amyloid fibrils within a few hours at low pH. In this study, we use glucagon as a model system to investigate fibril formation by liquid-state 1H-NMR spectroscopy One-dimensional, correlation, and diffusion experiments monitoring the fibril formation pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2008-07, Vol.95 (1), p.366-377
Hauptverfasser: Svane, Anna Sigrid Pii, Jahn, Kasper, Deva, Taru, Malmendal, Anders, Otzen, Daniel Erik, Dittmer, Jens, Nielsen, Niels Chr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 1
container_start_page 366
container_title Biophysical journal
container_volume 95
creator Svane, Anna Sigrid Pii
Jahn, Kasper
Deva, Taru
Malmendal, Anders
Otzen, Daniel Erik
Dittmer, Jens
Nielsen, Niels Chr
description The 29-residue peptide hormone glucagon forms amyloid fibrils within a few hours at low pH. In this study, we use glucagon as a model system to investigate fibril formation by liquid-state 1H-NMR spectroscopy One-dimensional, correlation, and diffusion experiments monitoring the fibril formation process provide insight into the early stages of the pathway on which the molecules aggregate to fibrils. In conjunction with these techniques, exchange experiments give information about the end-state conformation. Within the limits of detection, there are no signs of larger oligomeric intermediates in the course of the fibril formation process. Kinetic information is extracted from the time course of the residual free glucagon signal decay. This suggests that glucagon amyloids form by a nucleated growth mechanism in which trimers (rather than monomers) of glucagon interact directly with the growing fibrils rather than with each other. The results of proton/deuterium exchange experiments on mature fibrils with subsequent dissolution show that the N-terminal of glucagon is the least amenable to exchange, which indicates that this part is strongly involved in the intermolecular bonds of the fibrils.
doi_str_mv 10.1529/biophysj.107.122895
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2426625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349508703102</els_id><sourcerecordid>1536218931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-7940a985adc8810f859915ac4f3b5d5e77c1ddd3b4c2dc74d386d7c8680a6f4b3</originalsourceid><addsrcrecordid>eNp9kktrGzEUhYfS0jhpf0GhiC6absbV-1FoIYQ4KbgP2nQtNJLGlhmPHGkmMP--CnafC68EV985Fx2dqnqB4BwxrN42Ie7WU97MERRzhLFU7FE1Q4ziGkLJH1czCCGvCVXspDrNeQMhwgyip9UJkoQowdmsaq5M6ibwfTArn0FswcV26mJwYBGaFDqwiGlrhhD7gowueAeaCSzD3RhcXUSDB58_fXsHbtcefPW7ITgPbook9h5cd6M1q9g_q560psv--eE8q34srm4vb-rll-uPlxfL2jKqhlooCo2SzDgrJYKtZEohZixtScMc80JY5JwjDbXYWUEdkdwJK7mEhre0IWfVh73vbmy23lnfD8l0epfC1qRJRxP0vzd9WOtVvNeYYs4xKwbnB4MU70afB70N2fquM72PY9aSU4qUYqKQr4-SAnFOCIQFfHMURFwgLKEUtKCv_kM3cUx9SUxjxPhDJrhAZA_ZFHNOvv39PAT1Qyv0r1aUgdD7VhTVy7-T-aM51KAA7_eAL_9zH3zS2QbfW-9C8nbQLoajC34CyD3KNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215688102</pqid></control><display><type>article</type><title>Early Stages of Amyloid Fibril Formation Studied by Liquid-State NMR: The Peptide Hormone Glucagon</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Svane, Anna Sigrid Pii ; Jahn, Kasper ; Deva, Taru ; Malmendal, Anders ; Otzen, Daniel Erik ; Dittmer, Jens ; Nielsen, Niels Chr</creator><creatorcontrib>Svane, Anna Sigrid Pii ; Jahn, Kasper ; Deva, Taru ; Malmendal, Anders ; Otzen, Daniel Erik ; Dittmer, Jens ; Nielsen, Niels Chr</creatorcontrib><description>The 29-residue peptide hormone glucagon forms amyloid fibrils within a few hours at low pH. In this study, we use glucagon as a model system to investigate fibril formation by liquid-state 1H-NMR spectroscopy One-dimensional, correlation, and diffusion experiments monitoring the fibril formation process provide insight into the early stages of the pathway on which the molecules aggregate to fibrils. In conjunction with these techniques, exchange experiments give information about the end-state conformation. Within the limits of detection, there are no signs of larger oligomeric intermediates in the course of the fibril formation process. Kinetic information is extracted from the time course of the residual free glucagon signal decay. This suggests that glucagon amyloids form by a nucleated growth mechanism in which trimers (rather than monomers) of glucagon interact directly with the growing fibrils rather than with each other. The results of proton/deuterium exchange experiments on mature fibrils with subsequent dissolution show that the N-terminal of glucagon is the least amenable to exchange, which indicates that this part is strongly involved in the intermolecular bonds of the fibrils.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.107.122895</identifier><identifier>PMID: 18339765</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aggregates ; Amyloid - chemistry ; Amyloid - ultrastructure ; Computer Simulation ; Crystallization - methods ; Decay ; Deuterium ; Glucagon - chemistry ; Hormones ; Magnetic Resonance Spectroscopy - methods ; Models, Chemical ; Models, Molecular ; Monitoring ; Monomers ; NMR ; Nuclear magnetic resonance ; Peptides ; Phase Transition ; Protein Conformation ; Proteins ; Solutions ; Spectroscopy, Imaging, Other Techniques ; Trimers</subject><ispartof>Biophysical journal, 2008-07, Vol.95 (1), p.366-377</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright Biophysical Society Jul 1, 2008</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-7940a985adc8810f859915ac4f3b5d5e77c1ddd3b4c2dc74d386d7c8680a6f4b3</citedby><cites>FETCH-LOGICAL-c549t-7940a985adc8810f859915ac4f3b5d5e77c1ddd3b4c2dc74d386d7c8680a6f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2426625/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.107.122895$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18339765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svane, Anna Sigrid Pii</creatorcontrib><creatorcontrib>Jahn, Kasper</creatorcontrib><creatorcontrib>Deva, Taru</creatorcontrib><creatorcontrib>Malmendal, Anders</creatorcontrib><creatorcontrib>Otzen, Daniel Erik</creatorcontrib><creatorcontrib>Dittmer, Jens</creatorcontrib><creatorcontrib>Nielsen, Niels Chr</creatorcontrib><title>Early Stages of Amyloid Fibril Formation Studied by Liquid-State NMR: The Peptide Hormone Glucagon</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The 29-residue peptide hormone glucagon forms amyloid fibrils within a few hours at low pH. In this study, we use glucagon as a model system to investigate fibril formation by liquid-state 1H-NMR spectroscopy One-dimensional, correlation, and diffusion experiments monitoring the fibril formation process provide insight into the early stages of the pathway on which the molecules aggregate to fibrils. In conjunction with these techniques, exchange experiments give information about the end-state conformation. Within the limits of detection, there are no signs of larger oligomeric intermediates in the course of the fibril formation process. Kinetic information is extracted from the time course of the residual free glucagon signal decay. This suggests that glucagon amyloids form by a nucleated growth mechanism in which trimers (rather than monomers) of glucagon interact directly with the growing fibrils rather than with each other. The results of proton/deuterium exchange experiments on mature fibrils with subsequent dissolution show that the N-terminal of glucagon is the least amenable to exchange, which indicates that this part is strongly involved in the intermolecular bonds of the fibrils.</description><subject>Aggregates</subject><subject>Amyloid - chemistry</subject><subject>Amyloid - ultrastructure</subject><subject>Computer Simulation</subject><subject>Crystallization - methods</subject><subject>Decay</subject><subject>Deuterium</subject><subject>Glucagon - chemistry</subject><subject>Hormones</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Monitoring</subject><subject>Monomers</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Phase Transition</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Solutions</subject><subject>Spectroscopy, Imaging, Other Techniques</subject><subject>Trimers</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kktrGzEUhYfS0jhpf0GhiC6absbV-1FoIYQ4KbgP2nQtNJLGlhmPHGkmMP--CnafC68EV985Fx2dqnqB4BwxrN42Ie7WU97MERRzhLFU7FE1Q4ziGkLJH1czCCGvCVXspDrNeQMhwgyip9UJkoQowdmsaq5M6ibwfTArn0FswcV26mJwYBGaFDqwiGlrhhD7gowueAeaCSzD3RhcXUSDB58_fXsHbtcefPW7ITgPbook9h5cd6M1q9g_q560psv--eE8q34srm4vb-rll-uPlxfL2jKqhlooCo2SzDgrJYKtZEohZixtScMc80JY5JwjDbXYWUEdkdwJK7mEhre0IWfVh73vbmy23lnfD8l0epfC1qRJRxP0vzd9WOtVvNeYYs4xKwbnB4MU70afB70N2fquM72PY9aSU4qUYqKQr4-SAnFOCIQFfHMURFwgLKEUtKCv_kM3cUx9SUxjxPhDJrhAZA_ZFHNOvv39PAT1Qyv0r1aUgdD7VhTVy7-T-aM51KAA7_eAL_9zH3zS2QbfW-9C8nbQLoajC34CyD3KNA</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Svane, Anna Sigrid Pii</creator><creator>Jahn, Kasper</creator><creator>Deva, Taru</creator><creator>Malmendal, Anders</creator><creator>Otzen, Daniel Erik</creator><creator>Dittmer, Jens</creator><creator>Nielsen, Niels Chr</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>Early Stages of Amyloid Fibril Formation Studied by Liquid-State NMR: The Peptide Hormone Glucagon</title><author>Svane, Anna Sigrid Pii ; Jahn, Kasper ; Deva, Taru ; Malmendal, Anders ; Otzen, Daniel Erik ; Dittmer, Jens ; Nielsen, Niels Chr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-7940a985adc8810f859915ac4f3b5d5e77c1ddd3b4c2dc74d386d7c8680a6f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aggregates</topic><topic>Amyloid - chemistry</topic><topic>Amyloid - ultrastructure</topic><topic>Computer Simulation</topic><topic>Crystallization - methods</topic><topic>Decay</topic><topic>Deuterium</topic><topic>Glucagon - chemistry</topic><topic>Hormones</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Monitoring</topic><topic>Monomers</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Phase Transition</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Solutions</topic><topic>Spectroscopy, Imaging, Other Techniques</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svane, Anna Sigrid Pii</creatorcontrib><creatorcontrib>Jahn, Kasper</creatorcontrib><creatorcontrib>Deva, Taru</creatorcontrib><creatorcontrib>Malmendal, Anders</creatorcontrib><creatorcontrib>Otzen, Daniel Erik</creatorcontrib><creatorcontrib>Dittmer, Jens</creatorcontrib><creatorcontrib>Nielsen, Niels Chr</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svane, Anna Sigrid Pii</au><au>Jahn, Kasper</au><au>Deva, Taru</au><au>Malmendal, Anders</au><au>Otzen, Daniel Erik</au><au>Dittmer, Jens</au><au>Nielsen, Niels Chr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early Stages of Amyloid Fibril Formation Studied by Liquid-State NMR: The Peptide Hormone Glucagon</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>95</volume><issue>1</issue><spage>366</spage><epage>377</epage><pages>366-377</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The 29-residue peptide hormone glucagon forms amyloid fibrils within a few hours at low pH. In this study, we use glucagon as a model system to investigate fibril formation by liquid-state 1H-NMR spectroscopy One-dimensional, correlation, and diffusion experiments monitoring the fibril formation process provide insight into the early stages of the pathway on which the molecules aggregate to fibrils. In conjunction with these techniques, exchange experiments give information about the end-state conformation. Within the limits of detection, there are no signs of larger oligomeric intermediates in the course of the fibril formation process. Kinetic information is extracted from the time course of the residual free glucagon signal decay. This suggests that glucagon amyloids form by a nucleated growth mechanism in which trimers (rather than monomers) of glucagon interact directly with the growing fibrils rather than with each other. The results of proton/deuterium exchange experiments on mature fibrils with subsequent dissolution show that the N-terminal of glucagon is the least amenable to exchange, which indicates that this part is strongly involved in the intermolecular bonds of the fibrils.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18339765</pmid><doi>10.1529/biophysj.107.122895</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2008-07, Vol.95 (1), p.366-377
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2426625
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Aggregates
Amyloid - chemistry
Amyloid - ultrastructure
Computer Simulation
Crystallization - methods
Decay
Deuterium
Glucagon - chemistry
Hormones
Magnetic Resonance Spectroscopy - methods
Models, Chemical
Models, Molecular
Monitoring
Monomers
NMR
Nuclear magnetic resonance
Peptides
Phase Transition
Protein Conformation
Proteins
Solutions
Spectroscopy, Imaging, Other Techniques
Trimers
title Early Stages of Amyloid Fibril Formation Studied by Liquid-State NMR: The Peptide Hormone Glucagon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20Stages%20of%20Amyloid%20Fibril%20Formation%20Studied%20by%20Liquid-State%20NMR:%20The%20Peptide%20Hormone%20Glucagon&rft.jtitle=Biophysical%20journal&rft.au=Svane,%20Anna%20Sigrid%20Pii&rft.date=2008-07-01&rft.volume=95&rft.issue=1&rft.spage=366&rft.epage=377&rft.pages=366-377&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.107.122895&rft_dat=%3Cproquest_pubme%3E1536218931%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215688102&rft_id=info:pmid/18339765&rft_els_id=S0006349508703102&rfr_iscdi=true