Mutants in DsbB that Appear to Redirect Oxidation through the Disulfide Isomerization Pathway

Disulfide bond formation occurs in secreted proteins in Escherichia coli when the disulfide oxidoreductase DsbA, a soluble periplasmic protein, nonspecifically transfers a disulfide to a substrate protein. The catalytic disulfide of DsbA is regenerated by the inner-membrane protein DsbB. To help ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2008-04, Vol.377 (5), p.1433-1442
Hauptverfasser: Pan, Jonathan L., Sliskovic, Inga, Bardwell, James C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1442
container_issue 5
container_start_page 1433
container_title Journal of molecular biology
container_volume 377
creator Pan, Jonathan L.
Sliskovic, Inga
Bardwell, James C.A.
description Disulfide bond formation occurs in secreted proteins in Escherichia coli when the disulfide oxidoreductase DsbA, a soluble periplasmic protein, nonspecifically transfers a disulfide to a substrate protein. The catalytic disulfide of DsbA is regenerated by the inner-membrane protein DsbB. To help identify the specificity determinants in DsbB and to understand the nature of the kinetic barrier preventing direct oxidation of newly secreted proteins by DsbB, we imposed selective pressure to find novel mutations in DsbB that would function to bypass the need for the disulfide carrier DsbA. We found a series of mutations localized to a short horizontal α-helix anchored near the outer surface of the inner membrane of DsbB that eliminated the need for DsbA. These mutations changed hydrophobic residues into nonhydrophobic residues. We hypothesize that these mutations may act by decreasing the affinity of this α-helix to the membrane. The DsbB mutants were dependent on the disulfide oxidoreductase DsbC, a soluble periplasmic thiol–disulfide isomerase, for complementation. DsbB is not normally able to oxidize DsbC, possibly due to a steric clash that occurs between DsbC and the membrane adjacent to DsbB. DsbC must be in the reduced form to function as an isomerase. In contrast, DsbA must remain oxidized to function as an oxidizing thiol–disulfide oxidoreductase. The lack of interaction that normally exists between DsbB and DsbC appears to provide a means to separate the DsbA–DsbB oxidation pathway and the DsbC–DsbD isomerization pathway. Our mutants in DsbB may act by redirecting oxidant flow to take place through the isomerization pathway.
doi_str_mv 10.1016/j.jmb.2008.01.058
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2391272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283608001058</els_id><sourcerecordid>20885502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-ec698e4b4c1a5c146af6a686632207487a79fa1400411d819c62be8d3bbebce03</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCD-CCfOKWMLYTxxESUmkpVCoqQnBEluNMul4l8dZ2CuXX49Wu-LjAaQ7zzGvPPIQ8Y1AyYPLlptxMXckBVAmshFo9ICsGqi2UFOohWQFwXnAl5BE5jnEDALWo1GNyxJTgdS34inz9sCQzp0jdTM9j94amtUn0dLtFE2jy9BP2LqBN9Pq7601yfs5E8MvNOlek5y4u4-B6pJfRTxjcjz3z0aT1N3P_hDwazBjx6aGekC8Xbz-fvS-urt9dnp1eFbZSkAq0slVYdZVlpraskmaQRiopBefQVKoxTTsYVgFUjPWKtVbyDlUvug47iyBOyOt97nbpJuwtzimYUW-Dm0y41944_Xdndmt94-80Fy3jDc8BLw4Bwd8uGJOeXLQ4jmZGv0Td5JebStT_BTkoVdewS2R70AYfY8Dh128Y6J09vdHZnt7Z08B0tpdnnv-5xu-Jg64MvNoDmI955zDoaB3O9iBJ9979I_4nlwSsJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20885502</pqid></control><display><type>article</type><title>Mutants in DsbB that Appear to Redirect Oxidation through the Disulfide Isomerization Pathway</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pan, Jonathan L. ; Sliskovic, Inga ; Bardwell, James C.A.</creator><creatorcontrib>Pan, Jonathan L. ; Sliskovic, Inga ; Bardwell, James C.A.</creatorcontrib><description>Disulfide bond formation occurs in secreted proteins in Escherichia coli when the disulfide oxidoreductase DsbA, a soluble periplasmic protein, nonspecifically transfers a disulfide to a substrate protein. The catalytic disulfide of DsbA is regenerated by the inner-membrane protein DsbB. To help identify the specificity determinants in DsbB and to understand the nature of the kinetic barrier preventing direct oxidation of newly secreted proteins by DsbB, we imposed selective pressure to find novel mutations in DsbB that would function to bypass the need for the disulfide carrier DsbA. We found a series of mutations localized to a short horizontal α-helix anchored near the outer surface of the inner membrane of DsbB that eliminated the need for DsbA. These mutations changed hydrophobic residues into nonhydrophobic residues. We hypothesize that these mutations may act by decreasing the affinity of this α-helix to the membrane. The DsbB mutants were dependent on the disulfide oxidoreductase DsbC, a soluble periplasmic thiol–disulfide isomerase, for complementation. DsbB is not normally able to oxidize DsbC, possibly due to a steric clash that occurs between DsbC and the membrane adjacent to DsbB. DsbC must be in the reduced form to function as an isomerase. In contrast, DsbA must remain oxidized to function as an oxidizing thiol–disulfide oxidoreductase. The lack of interaction that normally exists between DsbB and DsbC appears to provide a means to separate the DsbA–DsbB oxidation pathway and the DsbC–DsbD isomerization pathway. Our mutants in DsbB may act by redirecting oxidant flow to take place through the isomerization pathway.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2008.01.058</identifier><identifier>PMID: 18325532</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cadmium - pharmacology ; disulfide bond formation ; Disulfides - chemistry ; Disulfides - metabolism ; DsbA ; DsbB ; DsbC ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Glutathione - metabolism ; Isomerism ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Models, Molecular ; Mutation ; Oxidation-Reduction ; Protein Disulfide-Isomerases - chemistry ; Protein Disulfide-Isomerases - genetics ; Protein Disulfide-Isomerases - metabolism ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction - drug effects ; Substrate Specificity</subject><ispartof>Journal of molecular biology, 2008-04, Vol.377 (5), p.1433-1442</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-ec698e4b4c1a5c146af6a686632207487a79fa1400411d819c62be8d3bbebce03</citedby><cites>FETCH-LOGICAL-c480t-ec698e4b4c1a5c146af6a686632207487a79fa1400411d819c62be8d3bbebce03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2008.01.058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18325532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Jonathan L.</creatorcontrib><creatorcontrib>Sliskovic, Inga</creatorcontrib><creatorcontrib>Bardwell, James C.A.</creatorcontrib><title>Mutants in DsbB that Appear to Redirect Oxidation through the Disulfide Isomerization Pathway</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Disulfide bond formation occurs in secreted proteins in Escherichia coli when the disulfide oxidoreductase DsbA, a soluble periplasmic protein, nonspecifically transfers a disulfide to a substrate protein. The catalytic disulfide of DsbA is regenerated by the inner-membrane protein DsbB. To help identify the specificity determinants in DsbB and to understand the nature of the kinetic barrier preventing direct oxidation of newly secreted proteins by DsbB, we imposed selective pressure to find novel mutations in DsbB that would function to bypass the need for the disulfide carrier DsbA. We found a series of mutations localized to a short horizontal α-helix anchored near the outer surface of the inner membrane of DsbB that eliminated the need for DsbA. These mutations changed hydrophobic residues into nonhydrophobic residues. We hypothesize that these mutations may act by decreasing the affinity of this α-helix to the membrane. The DsbB mutants were dependent on the disulfide oxidoreductase DsbC, a soluble periplasmic thiol–disulfide isomerase, for complementation. DsbB is not normally able to oxidize DsbC, possibly due to a steric clash that occurs between DsbC and the membrane adjacent to DsbB. DsbC must be in the reduced form to function as an isomerase. In contrast, DsbA must remain oxidized to function as an oxidizing thiol–disulfide oxidoreductase. The lack of interaction that normally exists between DsbB and DsbC appears to provide a means to separate the DsbA–DsbB oxidation pathway and the DsbC–DsbD isomerization pathway. Our mutants in DsbB may act by redirecting oxidant flow to take place through the isomerization pathway.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cadmium - pharmacology</subject><subject>disulfide bond formation</subject><subject>Disulfides - chemistry</subject><subject>Disulfides - metabolism</subject><subject>DsbA</subject><subject>DsbB</subject><subject>DsbC</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Glutathione - metabolism</subject><subject>Isomerism</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Protein Disulfide-Isomerases - chemistry</subject><subject>Protein Disulfide-Isomerases - genetics</subject><subject>Protein Disulfide-Isomerases - metabolism</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Signal Transduction - drug effects</subject><subject>Substrate Specificity</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EotvCD-CCfOKWMLYTxxESUmkpVCoqQnBEluNMul4l8dZ2CuXX49Wu-LjAaQ7zzGvPPIQ8Y1AyYPLlptxMXckBVAmshFo9ICsGqi2UFOohWQFwXnAl5BE5jnEDALWo1GNyxJTgdS34inz9sCQzp0jdTM9j94amtUn0dLtFE2jy9BP2LqBN9Pq7601yfs5E8MvNOlek5y4u4-B6pJfRTxjcjz3z0aT1N3P_hDwazBjx6aGekC8Xbz-fvS-urt9dnp1eFbZSkAq0slVYdZVlpraskmaQRiopBefQVKoxTTsYVgFUjPWKtVbyDlUvug47iyBOyOt97nbpJuwtzimYUW-Dm0y41944_Xdndmt94-80Fy3jDc8BLw4Bwd8uGJOeXLQ4jmZGv0Td5JebStT_BTkoVdewS2R70AYfY8Dh128Y6J09vdHZnt7Z08B0tpdnnv-5xu-Jg64MvNoDmI955zDoaB3O9iBJ9979I_4nlwSsJw</recordid><startdate>20080411</startdate><enddate>20080411</enddate><creator>Pan, Jonathan L.</creator><creator>Sliskovic, Inga</creator><creator>Bardwell, James C.A.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080411</creationdate><title>Mutants in DsbB that Appear to Redirect Oxidation through the Disulfide Isomerization Pathway</title><author>Pan, Jonathan L. ; Sliskovic, Inga ; Bardwell, James C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-ec698e4b4c1a5c146af6a686632207487a79fa1400411d819c62be8d3bbebce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cadmium - pharmacology</topic><topic>disulfide bond formation</topic><topic>Disulfides - chemistry</topic><topic>Disulfides - metabolism</topic><topic>DsbA</topic><topic>DsbB</topic><topic>DsbC</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Glutathione - metabolism</topic><topic>Isomerism</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Protein Disulfide-Isomerases - chemistry</topic><topic>Protein Disulfide-Isomerases - genetics</topic><topic>Protein Disulfide-Isomerases - metabolism</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Signal Transduction - drug effects</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jonathan L.</creatorcontrib><creatorcontrib>Sliskovic, Inga</creatorcontrib><creatorcontrib>Bardwell, James C.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jonathan L.</au><au>Sliskovic, Inga</au><au>Bardwell, James C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutants in DsbB that Appear to Redirect Oxidation through the Disulfide Isomerization Pathway</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2008-04-11</date><risdate>2008</risdate><volume>377</volume><issue>5</issue><spage>1433</spage><epage>1442</epage><pages>1433-1442</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Disulfide bond formation occurs in secreted proteins in Escherichia coli when the disulfide oxidoreductase DsbA, a soluble periplasmic protein, nonspecifically transfers a disulfide to a substrate protein. The catalytic disulfide of DsbA is regenerated by the inner-membrane protein DsbB. To help identify the specificity determinants in DsbB and to understand the nature of the kinetic barrier preventing direct oxidation of newly secreted proteins by DsbB, we imposed selective pressure to find novel mutations in DsbB that would function to bypass the need for the disulfide carrier DsbA. We found a series of mutations localized to a short horizontal α-helix anchored near the outer surface of the inner membrane of DsbB that eliminated the need for DsbA. These mutations changed hydrophobic residues into nonhydrophobic residues. We hypothesize that these mutations may act by decreasing the affinity of this α-helix to the membrane. The DsbB mutants were dependent on the disulfide oxidoreductase DsbC, a soluble periplasmic thiol–disulfide isomerase, for complementation. DsbB is not normally able to oxidize DsbC, possibly due to a steric clash that occurs between DsbC and the membrane adjacent to DsbB. DsbC must be in the reduced form to function as an isomerase. In contrast, DsbA must remain oxidized to function as an oxidizing thiol–disulfide oxidoreductase. The lack of interaction that normally exists between DsbB and DsbC appears to provide a means to separate the DsbA–DsbB oxidation pathway and the DsbC–DsbD isomerization pathway. Our mutants in DsbB may act by redirecting oxidant flow to take place through the isomerization pathway.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18325532</pmid><doi>10.1016/j.jmb.2008.01.058</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2008-04, Vol.377 (5), p.1433-1442
issn 0022-2836
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2391272
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cadmium - pharmacology
disulfide bond formation
Disulfides - chemistry
Disulfides - metabolism
DsbA
DsbB
DsbC
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Glutathione - metabolism
Isomerism
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Models, Molecular
Mutation
Oxidation-Reduction
Protein Disulfide-Isomerases - chemistry
Protein Disulfide-Isomerases - genetics
Protein Disulfide-Isomerases - metabolism
Protein Folding
Protein Structure, Secondary
Protein Structure, Tertiary
Signal Transduction - drug effects
Substrate Specificity
title Mutants in DsbB that Appear to Redirect Oxidation through the Disulfide Isomerization Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutants%20in%20DsbB%20that%20Appear%20to%20Redirect%20Oxidation%20through%20the%20Disulfide%20Isomerization%20Pathway&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Pan,%20Jonathan%20L.&rft.date=2008-04-11&rft.volume=377&rft.issue=5&rft.spage=1433&rft.epage=1442&rft.pages=1433-1442&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2008.01.058&rft_dat=%3Cproquest_pubme%3E20885502%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20885502&rft_id=info:pmid/18325532&rft_els_id=S0022283608001058&rfr_iscdi=true