Mechanisms of Rad52-Independent Spontaneous and UV-Induced Mitotic Recombination in Saccharomyces cerevisiae
In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is redu...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2008-05, Vol.179 (1), p.199-211 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 1 |
container_start_page | 199 |
container_title | Genetics (Austin) |
container_volume | 179 |
creator | Coïc, Eric Feldman, Taya Landman, Allison S Haber, James E |
description | In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast. |
doi_str_mv | 10.1534/genetics.108.087189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2390599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512454191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c1bb5db75f6e39b5c49b076b21ef73c6f1a376d2517a2c47756b4292b6417dad3</originalsourceid><addsrcrecordid>eNpdUV1vEzEQPCEQDYVfgAQnHpB4uOD15_kFqaqAVkqF1BBeLZ_Pl7i6s4N9SdR_j8MFCn2xpd2Z2Z2dongNaA6M0I9r6-3oTJoDqueoFlDLJ8UMJCUV5gSeFjOEgFdcEDgrXqR0hxDiktXPizOoKasBkVnR31iz0d6lIZWhK291y3B17Vu7tfnxY7ncBj9qb8Muldq35erHsb0zti1v3BjyAuWtNWFonNejC750vlxqk0VjGO6NTaWx0e5dctq-LJ51uk_21ek_L1ZfPn-_vKoW375eX14sKkMFHSsDTcPaRrCOWyIbZqhskOANBtsJYngHmgjeYgZC40wRjDcUS9xwCqLVLTkvPk26210z2NZkH1H3ahvdoOO9Ctqp_zvebdQ67BUmEjEps8CHSWDziHZ1sVDHGqJY1IyRPWTs-9OwGH7ubBrV4JKxfT8dTQkkBJY1zsB3j4B3YRd9PoTCQIFwJngGkQlkYkgp2u7veEDqGLv6E3su1GqKPbPe_Gv4gXPK-WHJjVtvDi5alQbd9xkO6nA4gJAKFPx2_nYCdjoovY4uqdUSIyAIGCc0S_0CMzjCSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214136576</pqid></control><display><type>article</type><title>Mechanisms of Rad52-Independent Spontaneous and UV-Induced Mitotic Recombination in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Coïc, Eric ; Feldman, Taya ; Landman, Allison S ; Haber, James E</creator><creatorcontrib>Coïc, Eric ; Feldman, Taya ; Landman, Allison S ; Haber, James E</creatorcontrib><description>In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.108.087189</identifier><identifier>PMID: 18458103</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>alleles ; Chromosomes ; DNA-binding proteins ; fungal proteins ; gene conversion ; Genetic recombination ; Investigations ; Life Sciences ; Mitosis - physiology ; mitotic recombination ; noncrossover gene conversion ; Rad52 DNA Repair and Recombination Protein - metabolism ; Recombination, Genetic - genetics ; Recombination, Genetic - radiation effects ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; spontaneous recombination ; ultraviolet radiation ; Ultraviolet Rays</subject><ispartof>Genetics (Austin), 2008-05, Vol.179 (1), p.199-211</ispartof><rights>Copyright Genetics Society of America May 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2008 by the Genetics Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c1bb5db75f6e39b5c49b076b21ef73c6f1a376d2517a2c47756b4292b6417dad3</citedby><cites>FETCH-LOGICAL-c474t-c1bb5db75f6e39b5c49b076b21ef73c6f1a376d2517a2c47756b4292b6417dad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18458103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04278553$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coïc, Eric</creatorcontrib><creatorcontrib>Feldman, Taya</creatorcontrib><creatorcontrib>Landman, Allison S</creatorcontrib><creatorcontrib>Haber, James E</creatorcontrib><title>Mechanisms of Rad52-Independent Spontaneous and UV-Induced Mitotic Recombination in Saccharomyces cerevisiae</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast.</description><subject>alleles</subject><subject>Chromosomes</subject><subject>DNA-binding proteins</subject><subject>fungal proteins</subject><subject>gene conversion</subject><subject>Genetic recombination</subject><subject>Investigations</subject><subject>Life Sciences</subject><subject>Mitosis - physiology</subject><subject>mitotic recombination</subject><subject>noncrossover gene conversion</subject><subject>Rad52 DNA Repair and Recombination Protein - metabolism</subject><subject>Recombination, Genetic - genetics</subject><subject>Recombination, Genetic - radiation effects</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>spontaneous recombination</subject><subject>ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdUV1vEzEQPCEQDYVfgAQnHpB4uOD15_kFqaqAVkqF1BBeLZ_Pl7i6s4N9SdR_j8MFCn2xpd2Z2Z2dongNaA6M0I9r6-3oTJoDqueoFlDLJ8UMJCUV5gSeFjOEgFdcEDgrXqR0hxDiktXPizOoKasBkVnR31iz0d6lIZWhK291y3B17Vu7tfnxY7ncBj9qb8Muldq35erHsb0zti1v3BjyAuWtNWFonNejC750vlxqk0VjGO6NTaWx0e5dctq-LJ51uk_21ek_L1ZfPn-_vKoW375eX14sKkMFHSsDTcPaRrCOWyIbZqhskOANBtsJYngHmgjeYgZC40wRjDcUS9xwCqLVLTkvPk26210z2NZkH1H3ahvdoOO9Ctqp_zvebdQ67BUmEjEps8CHSWDziHZ1sVDHGqJY1IyRPWTs-9OwGH7ubBrV4JKxfT8dTQkkBJY1zsB3j4B3YRd9PoTCQIFwJngGkQlkYkgp2u7veEDqGLv6E3su1GqKPbPe_Gv4gXPK-WHJjVtvDi5alQbd9xkO6nA4gJAKFPx2_nYCdjoovY4uqdUSIyAIGCc0S_0CMzjCSw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Coïc, Eric</creator><creator>Feldman, Taya</creator><creator>Landman, Allison S</creator><creator>Haber, James E</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20080501</creationdate><title>Mechanisms of Rad52-Independent Spontaneous and UV-Induced Mitotic Recombination in Saccharomyces cerevisiae</title><author>Coïc, Eric ; Feldman, Taya ; Landman, Allison S ; Haber, James E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c1bb5db75f6e39b5c49b076b21ef73c6f1a376d2517a2c47756b4292b6417dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>alleles</topic><topic>Chromosomes</topic><topic>DNA-binding proteins</topic><topic>fungal proteins</topic><topic>gene conversion</topic><topic>Genetic recombination</topic><topic>Investigations</topic><topic>Life Sciences</topic><topic>Mitosis - physiology</topic><topic>mitotic recombination</topic><topic>noncrossover gene conversion</topic><topic>Rad52 DNA Repair and Recombination Protein - metabolism</topic><topic>Recombination, Genetic - genetics</topic><topic>Recombination, Genetic - radiation effects</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>spontaneous recombination</topic><topic>ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coïc, Eric</creatorcontrib><creatorcontrib>Feldman, Taya</creatorcontrib><creatorcontrib>Landman, Allison S</creatorcontrib><creatorcontrib>Haber, James E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coïc, Eric</au><au>Feldman, Taya</au><au>Landman, Allison S</au><au>Haber, James E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of Rad52-Independent Spontaneous and UV-Induced Mitotic Recombination in Saccharomyces cerevisiae</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>179</volume><issue>1</issue><spage>199</spage><epage>211</epage><pages>199-211</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>18458103</pmid><doi>10.1534/genetics.108.087189</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2008-05, Vol.179 (1), p.199-211 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2390599 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | alleles Chromosomes DNA-binding proteins fungal proteins gene conversion Genetic recombination Investigations Life Sciences Mitosis - physiology mitotic recombination noncrossover gene conversion Rad52 DNA Repair and Recombination Protein - metabolism Recombination, Genetic - genetics Recombination, Genetic - radiation effects Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - metabolism spontaneous recombination ultraviolet radiation Ultraviolet Rays |
title | Mechanisms of Rad52-Independent Spontaneous and UV-Induced Mitotic Recombination in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20Rad52-Independent%20Spontaneous%20and%20UV-Induced%20Mitotic%20Recombination%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Genetics%20(Austin)&rft.au=Coi%CC%88c,%20Eric&rft.date=2008-05-01&rft.volume=179&rft.issue=1&rft.spage=199&rft.epage=211&rft.pages=199-211&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.108.087189&rft_dat=%3Cproquest_pubme%3E1512454191%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214136576&rft_id=info:pmid/18458103&rfr_iscdi=true |