NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron

Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2008-02, Vol.586 (4), p.1059-1075
Hauptverfasser: Delpy, Alain, Allain, Anne‐Emilie, Meyrand, Pierre, Branchereau, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1075
container_issue 4
container_start_page 1059
container_title The Journal of physiology
container_volume 586
creator Delpy, Alain
Allain, Anne‐Emilie
Meyrand, Pierre
Branchereau, Pascal
description Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional early in development (E11.5–E13.5) when GABA A receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation. At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and hyperpolarizes E Cl . In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout both early and late embryonic life.
doi_str_mv 10.1113/jphysiol.2007.146993
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2375629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70316482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5558-5faebcc201ab1a2cec209e21bd079347799056bffd5b2846af61c834c8bf27c83</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EotPCGyCUFWKTwXbiJN4goVGhQAUsytpynJvmVo4d7GSqES-Phwx_O1a-Vs75fE8OIc8Y3TLGild303CI6O2WU1pvWVlJWTwgm-OQ17UsHpINpZznRS3YGTmP8Y5SVlApH5Mz1lBZCSk35Punj7sdy4yfg3Zx8mGGkKHTZsa9ntG7bHEdBIsQMxjbcPAOTdbBHqyfRnBz5vvMDNYH7CAfoUM9Q5cIA7b4048uG_0SIYtT4tp0mb2DJXj3hDzqtY3w9HRekK9vL292V_n153fvd2-ucyOEaHLRa2iN4ZTplmluII0SOGs7mmKWKaukomr7vhMtb8pK9xUzTVGapu15naYL8nrlTkubNjRp66CtmgKOOhyU16j-_eJwULd-r3j6dxWXCfDiBAj-2wJxViNGA9ZqBymaqmnBqrLhSViuQhN8jAH6348wqo6tqV-tqWNram0t2Z7_veAf06mmJJCr4B4tHP4Lqm4-fOF1cUz_cvUOeDvcYwC1qqM3CPNBiaZSZUIJWfwAyCy7iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70316482</pqid></control><display><type>article</type><title>NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Delpy, Alain ; Allain, Anne‐Emilie ; Meyrand, Pierre ; Branchereau, Pascal</creator><creatorcontrib>Delpy, Alain ; Allain, Anne‐Emilie ; Meyrand, Pierre ; Branchereau, Pascal</creatorcontrib><description>Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional early in development (E11.5–E13.5) when GABA A receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation. At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and hyperpolarizes E Cl . In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout both early and late embryonic life.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.146993</identifier><identifier>PMID: 18096599</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Action Potentials - physiology ; Animals ; Biophysical Phenomena ; Biophysics ; Bumetanide - pharmacology ; Chlorides - metabolism ; Female ; Furosemide - pharmacology ; GABA Agonists - pharmacology ; Isonicotinic Acids - pharmacology ; K Cl- Cotransporters ; Mice ; Motor Neurons - drug effects ; Motor Neurons - metabolism ; Neuroscience ; Patch-Clamp Techniques ; Pregnancy ; Sodium Potassium Chloride Symporter Inhibitors - pharmacology ; Sodium-Potassium-Chloride Symporters - metabolism ; Solute Carrier Family 12, Member 2 ; Spinal Nerves - embryology ; Spinal Nerves - metabolism ; Symporters - metabolism</subject><ispartof>The Journal of physiology, 2008-02, Vol.586 (4), p.1059-1075</ispartof><rights>2008 The Journal of Physiology © 2008 The Physiological Society</rights><rights>2008 The Authors. Journal compilation © 2008 The Physiological Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5558-5faebcc201ab1a2cec209e21bd079347799056bffd5b2846af61c834c8bf27c83</citedby><cites>FETCH-LOGICAL-c5558-5faebcc201ab1a2cec209e21bd079347799056bffd5b2846af61c834c8bf27c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375629/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375629/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18096599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delpy, Alain</creatorcontrib><creatorcontrib>Allain, Anne‐Emilie</creatorcontrib><creatorcontrib>Meyrand, Pierre</creatorcontrib><creatorcontrib>Branchereau, Pascal</creatorcontrib><title>NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional early in development (E11.5–E13.5) when GABA A receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation. At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and hyperpolarizes E Cl . In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout both early and late embryonic life.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Bumetanide - pharmacology</subject><subject>Chlorides - metabolism</subject><subject>Female</subject><subject>Furosemide - pharmacology</subject><subject>GABA Agonists - pharmacology</subject><subject>Isonicotinic Acids - pharmacology</subject><subject>K Cl- Cotransporters</subject><subject>Mice</subject><subject>Motor Neurons - drug effects</subject><subject>Motor Neurons - metabolism</subject><subject>Neuroscience</subject><subject>Patch-Clamp Techniques</subject><subject>Pregnancy</subject><subject>Sodium Potassium Chloride Symporter Inhibitors - pharmacology</subject><subject>Sodium-Potassium-Chloride Symporters - metabolism</subject><subject>Solute Carrier Family 12, Member 2</subject><subject>Spinal Nerves - embryology</subject><subject>Spinal Nerves - metabolism</subject><subject>Symporters - metabolism</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EotPCGyCUFWKTwXbiJN4goVGhQAUsytpynJvmVo4d7GSqES-Phwx_O1a-Vs75fE8OIc8Y3TLGild303CI6O2WU1pvWVlJWTwgm-OQ17UsHpINpZznRS3YGTmP8Y5SVlApH5Mz1lBZCSk35Punj7sdy4yfg3Zx8mGGkKHTZsa9ntG7bHEdBIsQMxjbcPAOTdbBHqyfRnBz5vvMDNYH7CAfoUM9Q5cIA7b4048uG_0SIYtT4tp0mb2DJXj3hDzqtY3w9HRekK9vL292V_n153fvd2-ucyOEaHLRa2iN4ZTplmluII0SOGs7mmKWKaukomr7vhMtb8pK9xUzTVGapu15naYL8nrlTkubNjRp66CtmgKOOhyU16j-_eJwULd-r3j6dxWXCfDiBAj-2wJxViNGA9ZqBymaqmnBqrLhSViuQhN8jAH6348wqo6tqV-tqWNram0t2Z7_veAf06mmJJCr4B4tHP4Lqm4-fOF1cUz_cvUOeDvcYwC1qqM3CPNBiaZSZUIJWfwAyCy7iw</recordid><startdate>20080215</startdate><enddate>20080215</enddate><creator>Delpy, Alain</creator><creator>Allain, Anne‐Emilie</creator><creator>Meyrand, Pierre</creator><creator>Branchereau, Pascal</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080215</creationdate><title>NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron</title><author>Delpy, Alain ; Allain, Anne‐Emilie ; Meyrand, Pierre ; Branchereau, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5558-5faebcc201ab1a2cec209e21bd079347799056bffd5b2846af61c834c8bf27c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Bumetanide - pharmacology</topic><topic>Chlorides - metabolism</topic><topic>Female</topic><topic>Furosemide - pharmacology</topic><topic>GABA Agonists - pharmacology</topic><topic>Isonicotinic Acids - pharmacology</topic><topic>K Cl- Cotransporters</topic><topic>Mice</topic><topic>Motor Neurons - drug effects</topic><topic>Motor Neurons - metabolism</topic><topic>Neuroscience</topic><topic>Patch-Clamp Techniques</topic><topic>Pregnancy</topic><topic>Sodium Potassium Chloride Symporter Inhibitors - pharmacology</topic><topic>Sodium-Potassium-Chloride Symporters - metabolism</topic><topic>Solute Carrier Family 12, Member 2</topic><topic>Spinal Nerves - embryology</topic><topic>Spinal Nerves - metabolism</topic><topic>Symporters - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delpy, Alain</creatorcontrib><creatorcontrib>Allain, Anne‐Emilie</creatorcontrib><creatorcontrib>Meyrand, Pierre</creatorcontrib><creatorcontrib>Branchereau, Pascal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delpy, Alain</au><au>Allain, Anne‐Emilie</au><au>Meyrand, Pierre</au><au>Branchereau, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2008-02-15</date><risdate>2008</risdate><volume>586</volume><issue>4</issue><spage>1059</spage><epage>1075</epage><pages>1059-1075</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional early in development (E11.5–E13.5) when GABA A receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation. At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and hyperpolarizes E Cl . In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout both early and late embryonic life.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>18096599</pmid><doi>10.1113/jphysiol.2007.146993</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2008-02, Vol.586 (4), p.1059-1075
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2375629
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Action Potentials - physiology
Animals
Biophysical Phenomena
Biophysics
Bumetanide - pharmacology
Chlorides - metabolism
Female
Furosemide - pharmacology
GABA Agonists - pharmacology
Isonicotinic Acids - pharmacology
K Cl- Cotransporters
Mice
Motor Neurons - drug effects
Motor Neurons - metabolism
Neuroscience
Patch-Clamp Techniques
Pregnancy
Sodium Potassium Chloride Symporter Inhibitors - pharmacology
Sodium-Potassium-Chloride Symporters - metabolism
Solute Carrier Family 12, Member 2
Spinal Nerves - embryology
Spinal Nerves - metabolism
Symporters - metabolism
title NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NKCC1%20cotransporter%20inactivation%20underlies%20embryonic%20development%20of%20chloride-mediated%20inhibition%20in%20mouse%20spinal%20motoneuron&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Delpy,%20Alain&rft.date=2008-02-15&rft.volume=586&rft.issue=4&rft.spage=1059&rft.epage=1075&rft.pages=1059-1075&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.146993&rft_dat=%3Cproquest_pubme%3E70316482%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70316482&rft_id=info:pmid/18096599&rfr_iscdi=true