NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron
Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated with a NKCC1 down-regulat...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2008-02, Vol.586 (4), p.1059-1075 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1075 |
---|---|
container_issue | 4 |
container_start_page | 1059 |
container_title | The Journal of physiology |
container_volume | 586 |
creator | Delpy, Alain Allain, Anne‐Emilie Meyrand, Pierre Branchereau, Pascal |
description | Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride
equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated
with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional
early in development (E11.5âE13.5) when GABA A receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation.
At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and
hyperpolarizes E Cl . In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of
the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout
both early and late embryonic life. |
doi_str_mv | 10.1113/jphysiol.2007.146993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2375629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70316482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5558-5faebcc201ab1a2cec209e21bd079347799056bffd5b2846af61c834c8bf27c83</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EotPCGyCUFWKTwXbiJN4goVGhQAUsytpynJvmVo4d7GSqES-Phwx_O1a-Vs75fE8OIc8Y3TLGild303CI6O2WU1pvWVlJWTwgm-OQ17UsHpINpZznRS3YGTmP8Y5SVlApH5Mz1lBZCSk35Punj7sdy4yfg3Zx8mGGkKHTZsa9ntG7bHEdBIsQMxjbcPAOTdbBHqyfRnBz5vvMDNYH7CAfoUM9Q5cIA7b4048uG_0SIYtT4tp0mb2DJXj3hDzqtY3w9HRekK9vL292V_n153fvd2-ucyOEaHLRa2iN4ZTplmluII0SOGs7mmKWKaukomr7vhMtb8pK9xUzTVGapu15naYL8nrlTkubNjRp66CtmgKOOhyU16j-_eJwULd-r3j6dxWXCfDiBAj-2wJxViNGA9ZqBymaqmnBqrLhSViuQhN8jAH6348wqo6tqV-tqWNram0t2Z7_veAf06mmJJCr4B4tHP4Lqm4-fOF1cUz_cvUOeDvcYwC1qqM3CPNBiaZSZUIJWfwAyCy7iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70316482</pqid></control><display><type>article</type><title>NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Delpy, Alain ; Allain, Anne‐Emilie ; Meyrand, Pierre ; Branchereau, Pascal</creator><creatorcontrib>Delpy, Alain ; Allain, Anne‐Emilie ; Meyrand, Pierre ; Branchereau, Pascal</creatorcontrib><description>Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride
equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated
with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional
early in development (E11.5âE13.5) when GABA A receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation.
At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and
hyperpolarizes E Cl . In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of
the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout
both early and late embryonic life.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.146993</identifier><identifier>PMID: 18096599</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Action Potentials - physiology ; Animals ; Biophysical Phenomena ; Biophysics ; Bumetanide - pharmacology ; Chlorides - metabolism ; Female ; Furosemide - pharmacology ; GABA Agonists - pharmacology ; Isonicotinic Acids - pharmacology ; K Cl- Cotransporters ; Mice ; Motor Neurons - drug effects ; Motor Neurons - metabolism ; Neuroscience ; Patch-Clamp Techniques ; Pregnancy ; Sodium Potassium Chloride Symporter Inhibitors - pharmacology ; Sodium-Potassium-Chloride Symporters - metabolism ; Solute Carrier Family 12, Member 2 ; Spinal Nerves - embryology ; Spinal Nerves - metabolism ; Symporters - metabolism</subject><ispartof>The Journal of physiology, 2008-02, Vol.586 (4), p.1059-1075</ispartof><rights>2008 The Journal of Physiology © 2008 The Physiological Society</rights><rights>2008 The Authors. Journal compilation © 2008 The Physiological Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5558-5faebcc201ab1a2cec209e21bd079347799056bffd5b2846af61c834c8bf27c83</citedby><cites>FETCH-LOGICAL-c5558-5faebcc201ab1a2cec209e21bd079347799056bffd5b2846af61c834c8bf27c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375629/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375629/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18096599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delpy, Alain</creatorcontrib><creatorcontrib>Allain, Anne‐Emilie</creatorcontrib><creatorcontrib>Meyrand, Pierre</creatorcontrib><creatorcontrib>Branchereau, Pascal</creatorcontrib><title>NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride
equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated
with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional
early in development (E11.5âE13.5) when GABA A receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation.
At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and
hyperpolarizes E Cl . In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of
the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout
both early and late embryonic life.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Bumetanide - pharmacology</subject><subject>Chlorides - metabolism</subject><subject>Female</subject><subject>Furosemide - pharmacology</subject><subject>GABA Agonists - pharmacology</subject><subject>Isonicotinic Acids - pharmacology</subject><subject>K Cl- Cotransporters</subject><subject>Mice</subject><subject>Motor Neurons - drug effects</subject><subject>Motor Neurons - metabolism</subject><subject>Neuroscience</subject><subject>Patch-Clamp Techniques</subject><subject>Pregnancy</subject><subject>Sodium Potassium Chloride Symporter Inhibitors - pharmacology</subject><subject>Sodium-Potassium-Chloride Symporters - metabolism</subject><subject>Solute Carrier Family 12, Member 2</subject><subject>Spinal Nerves - embryology</subject><subject>Spinal Nerves - metabolism</subject><subject>Symporters - metabolism</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EotPCGyCUFWKTwXbiJN4goVGhQAUsytpynJvmVo4d7GSqES-Phwx_O1a-Vs75fE8OIc8Y3TLGild303CI6O2WU1pvWVlJWTwgm-OQ17UsHpINpZznRS3YGTmP8Y5SVlApH5Mz1lBZCSk35Punj7sdy4yfg3Zx8mGGkKHTZsa9ntG7bHEdBIsQMxjbcPAOTdbBHqyfRnBz5vvMDNYH7CAfoUM9Q5cIA7b4048uG_0SIYtT4tp0mb2DJXj3hDzqtY3w9HRekK9vL292V_n153fvd2-ucyOEaHLRa2iN4ZTplmluII0SOGs7mmKWKaukomr7vhMtb8pK9xUzTVGapu15naYL8nrlTkubNjRp66CtmgKOOhyU16j-_eJwULd-r3j6dxWXCfDiBAj-2wJxViNGA9ZqBymaqmnBqrLhSViuQhN8jAH6348wqo6tqV-tqWNram0t2Z7_veAf06mmJJCr4B4tHP4Lqm4-fOF1cUz_cvUOeDvcYwC1qqM3CPNBiaZSZUIJWfwAyCy7iw</recordid><startdate>20080215</startdate><enddate>20080215</enddate><creator>Delpy, Alain</creator><creator>Allain, Anne‐Emilie</creator><creator>Meyrand, Pierre</creator><creator>Branchereau, Pascal</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080215</creationdate><title>NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron</title><author>Delpy, Alain ; Allain, Anne‐Emilie ; Meyrand, Pierre ; Branchereau, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5558-5faebcc201ab1a2cec209e21bd079347799056bffd5b2846af61c834c8bf27c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Bumetanide - pharmacology</topic><topic>Chlorides - metabolism</topic><topic>Female</topic><topic>Furosemide - pharmacology</topic><topic>GABA Agonists - pharmacology</topic><topic>Isonicotinic Acids - pharmacology</topic><topic>K Cl- Cotransporters</topic><topic>Mice</topic><topic>Motor Neurons - drug effects</topic><topic>Motor Neurons - metabolism</topic><topic>Neuroscience</topic><topic>Patch-Clamp Techniques</topic><topic>Pregnancy</topic><topic>Sodium Potassium Chloride Symporter Inhibitors - pharmacology</topic><topic>Sodium-Potassium-Chloride Symporters - metabolism</topic><topic>Solute Carrier Family 12, Member 2</topic><topic>Spinal Nerves - embryology</topic><topic>Spinal Nerves - metabolism</topic><topic>Symporters - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delpy, Alain</creatorcontrib><creatorcontrib>Allain, Anne‐Emilie</creatorcontrib><creatorcontrib>Meyrand, Pierre</creatorcontrib><creatorcontrib>Branchereau, Pascal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delpy, Alain</au><au>Allain, Anne‐Emilie</au><au>Meyrand, Pierre</au><au>Branchereau, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2008-02-15</date><risdate>2008</risdate><volume>586</volume><issue>4</issue><spage>1059</spage><epage>1075</epage><pages>1059-1075</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Early in development, GABA and glycine exert excitatory action that turns to inhibition due to modification of the chloride
equilibrium potential ( E Cl ) controlled by the KCC2 and NKCC1 transporters. This switch is thought to be due to a late expression of KCC2 associated
with a NKCC1 down-regulation. Here, we show in mouse embryonic spinal cord that both KCC2 and NKCC1 are expressed and functional
early in development (E11.5âE13.5) when GABA A receptor activation induces strong excitatory action. After E15.5, a switch occurs rendering GABA unable to provide excitation.
At these subsequent stages, NKCC1 becomes both inactive and less abundant in motoneurons while KCC2 remains functional and
hyperpolarizes E Cl . In conclusion, in contrast to other systems, the cotransporters are concomitantly expressed early in the development of
the mouse spinal cord. Moreover, whereas NKCC1 follows a classical functional extinction, KCC2 is highly expressed throughout
both early and late embryonic life.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>18096599</pmid><doi>10.1113/jphysiol.2007.146993</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2008-02, Vol.586 (4), p.1059-1075 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2375629 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Action Potentials - physiology Animals Biophysical Phenomena Biophysics Bumetanide - pharmacology Chlorides - metabolism Female Furosemide - pharmacology GABA Agonists - pharmacology Isonicotinic Acids - pharmacology K Cl- Cotransporters Mice Motor Neurons - drug effects Motor Neurons - metabolism Neuroscience Patch-Clamp Techniques Pregnancy Sodium Potassium Chloride Symporter Inhibitors - pharmacology Sodium-Potassium-Chloride Symporters - metabolism Solute Carrier Family 12, Member 2 Spinal Nerves - embryology Spinal Nerves - metabolism Symporters - metabolism |
title | NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NKCC1%20cotransporter%20inactivation%20underlies%20embryonic%20development%20of%20chloride-mediated%20inhibition%20in%20mouse%20spinal%20motoneuron&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Delpy,%20Alain&rft.date=2008-02-15&rft.volume=586&rft.issue=4&rft.spage=1059&rft.epage=1075&rft.pages=1059-1075&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.146993&rft_dat=%3Cproquest_pubme%3E70316482%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70316482&rft_id=info:pmid/18096599&rfr_iscdi=true |