Multiphoton imaging of chick retinal development in relation to gap junctional communication
Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread direction during G1, passing through S-phase at its...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2007-12, Vol.585 (3), p.711-719 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 719 |
---|---|
container_issue | 3 |
container_start_page | 711 |
container_title | The Journal of physiology |
container_volume | 585 |
creator | Becker, David L. Webb, Kevin F. Thrasivoulou, Christopher Lin, Chih‐Chi Nadershahi, Roxana Tsakiri, Niki Cook, Jeremy E. |
description | Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical
ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread
direction during G1, passing through S-phase at its peak and then, on entering G2, returning towards the ventricular surface
where it enters M-phase and divides. We have previously shown that individual saltatory movements of the nucleus correlate
with transient changes in cytosolic calcium concentration within these progenitor cells and that these events spread to neighbouring
progenitors through connexin43 (Cx43) gap junction channels, thereby coordinating the migration of coupled clusters of cells.
Disrupting coupling with pharmacological agents, Cx43-specific antisense oligodeoxynucleotides (asODNs) or dominant negative
Cx43 (dnCx43) inhibits the sharing of calcium events, reducing the number that each cell experiences and significantly slowing
INM. We have developed protocols for imaging migrating progenitor cells by confocal microscopy over relatively short periods,
and by multiphoton microscopy over more extended periods that include complete cell cycles. We find that perturbing gap junctional
communication not only slows the INM of progenitor cells but also apparently prevents them from changing direction at critical
phases of the cell cycle. It also disrupts the migration of young neurons to their appropriate layers after terminal division
and leads to their ectopic differentiation. The ability to perform extended time-lapse imaging over 3D volumes in living retina
using multiphoton microscopy should now allow fundamental mechanisms governing development of the retinal neuroepithelium
to be probed in detail. |
doi_str_mv | 10.1113/jphysiol.2007.138776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2375527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20479279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5855-1918ee9545d76b785538973c9ea0a2bf4253e9454d119b3fa43b22f90d35e0b3</originalsourceid><addsrcrecordid>eNqNkcuO1DAQRS0EYpqBP0AoK1il8TNub5DQaHhpECx6iWQ5TiVx49ghTmbUf4-bNK8VrCxXnXtVVRehpwRvCSHs5WHsj8lFv6UYyy1hOymre2hDeKVKKRW7jzYYU1oyKcgFepTSAWPCsFIP0QXJfUpEtUFfPi5-dmMf5xgKN5jOha6IbWF7Z78WE8wuGF80cAs-jgOEuXAhl72ZXRbMsejMWByWYE__TNo4DEtw9kf_MXrQGp_gyfm9RPs31_urd-XNp7fvr17flFbshCiJIjsAJbhoZFXLXGI7JZlVYLChdcupYKC44A0hqmat4aymtFW4YQJwzS7Rq9V2XOoBGpunnIzX45T3mY46Gqf_7gTX6y7eappvI6jMBs_PBlP8tkCa9eCSBe9NgLgkXSlcccHUP0GKuVRUnkC-gnaKKU3Q_pqGYH2KT_-MT5_i02t8Wfbsz01-i855ZUCtwJ3zcPwvU73_8JlWRGTti1Xbu66_cxPolU7ROpiPOmehmZbZ5zs-fbsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20479279</pqid></control><display><type>article</type><title>Multiphoton imaging of chick retinal development in relation to gap junctional communication</title><source>IngentaConnect Backfiles</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Becker, David L. ; Webb, Kevin F. ; Thrasivoulou, Christopher ; Lin, Chih‐Chi ; Nadershahi, Roxana ; Tsakiri, Niki ; Cook, Jeremy E.</creator><creatorcontrib>Becker, David L. ; Webb, Kevin F. ; Thrasivoulou, Christopher ; Lin, Chih‐Chi ; Nadershahi, Roxana ; Tsakiri, Niki ; Cook, Jeremy E.</creatorcontrib><description>Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical
ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread
direction during G1, passing through S-phase at its peak and then, on entering G2, returning towards the ventricular surface
where it enters M-phase and divides. We have previously shown that individual saltatory movements of the nucleus correlate
with transient changes in cytosolic calcium concentration within these progenitor cells and that these events spread to neighbouring
progenitors through connexin43 (Cx43) gap junction channels, thereby coordinating the migration of coupled clusters of cells.
Disrupting coupling with pharmacological agents, Cx43-specific antisense oligodeoxynucleotides (asODNs) or dominant negative
Cx43 (dnCx43) inhibits the sharing of calcium events, reducing the number that each cell experiences and significantly slowing
INM. We have developed protocols for imaging migrating progenitor cells by confocal microscopy over relatively short periods,
and by multiphoton microscopy over more extended periods that include complete cell cycles. We find that perturbing gap junctional
communication not only slows the INM of progenitor cells but also apparently prevents them from changing direction at critical
phases of the cell cycle. It also disrupts the migration of young neurons to their appropriate layers after terminal division
and leads to their ectopic differentiation. The ability to perform extended time-lapse imaging over 3D volumes in living retina
using multiphoton microscopy should now allow fundamental mechanisms governing development of the retinal neuroepithelium
to be probed in detail.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.138776</identifier><identifier>PMID: 17932156</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Animals ; Carbocyanines ; Cell Communication - physiology ; Cell Cycle - physiology ; Cell Differentiation - physiology ; Cellular ; Chick Embryo ; Connexin 43 - metabolism ; Culture Media ; Electroporation ; Gap Junctions - physiology ; Green Fluorescent Proteins - metabolism ; Image Processing, Computer-Assisted ; Microscopy, Confocal ; Microscopy, Fluorescence, Multiphoton ; Neurons - metabolism ; Neurons - physiology ; Retina - cytology ; Retina - embryology ; Stem Cells - metabolism ; Stem Cells - physiology ; Tungsten</subject><ispartof>The Journal of physiology, 2007-12, Vol.585 (3), p.711-719</ispartof><rights>2007 The Journal of Physiology © 2007 The Physiological Society</rights><rights>2007 The Authors. Journal compilation © 2007 The Physiological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5855-1918ee9545d76b785538973c9ea0a2bf4253e9454d119b3fa43b22f90d35e0b3</citedby><cites>FETCH-LOGICAL-c5855-1918ee9545d76b785538973c9ea0a2bf4253e9454d119b3fa43b22f90d35e0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375527/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375527/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17932156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, David L.</creatorcontrib><creatorcontrib>Webb, Kevin F.</creatorcontrib><creatorcontrib>Thrasivoulou, Christopher</creatorcontrib><creatorcontrib>Lin, Chih‐Chi</creatorcontrib><creatorcontrib>Nadershahi, Roxana</creatorcontrib><creatorcontrib>Tsakiri, Niki</creatorcontrib><creatorcontrib>Cook, Jeremy E.</creatorcontrib><title>Multiphoton imaging of chick retinal development in relation to gap junctional communication</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical
ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread
direction during G1, passing through S-phase at its peak and then, on entering G2, returning towards the ventricular surface
where it enters M-phase and divides. We have previously shown that individual saltatory movements of the nucleus correlate
with transient changes in cytosolic calcium concentration within these progenitor cells and that these events spread to neighbouring
progenitors through connexin43 (Cx43) gap junction channels, thereby coordinating the migration of coupled clusters of cells.
Disrupting coupling with pharmacological agents, Cx43-specific antisense oligodeoxynucleotides (asODNs) or dominant negative
Cx43 (dnCx43) inhibits the sharing of calcium events, reducing the number that each cell experiences and significantly slowing
INM. We have developed protocols for imaging migrating progenitor cells by confocal microscopy over relatively short periods,
and by multiphoton microscopy over more extended periods that include complete cell cycles. We find that perturbing gap junctional
communication not only slows the INM of progenitor cells but also apparently prevents them from changing direction at critical
phases of the cell cycle. It also disrupts the migration of young neurons to their appropriate layers after terminal division
and leads to their ectopic differentiation. The ability to perform extended time-lapse imaging over 3D volumes in living retina
using multiphoton microscopy should now allow fundamental mechanisms governing development of the retinal neuroepithelium
to be probed in detail.</description><subject>Animals</subject><subject>Carbocyanines</subject><subject>Cell Communication - physiology</subject><subject>Cell Cycle - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cellular</subject><subject>Chick Embryo</subject><subject>Connexin 43 - metabolism</subject><subject>Culture Media</subject><subject>Electroporation</subject><subject>Gap Junctions - physiology</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Image Processing, Computer-Assisted</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Fluorescence, Multiphoton</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Retina - cytology</subject><subject>Retina - embryology</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - physiology</subject><subject>Tungsten</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuO1DAQRS0EYpqBP0AoK1il8TNub5DQaHhpECx6iWQ5TiVx49ghTmbUf4-bNK8VrCxXnXtVVRehpwRvCSHs5WHsj8lFv6UYyy1hOymre2hDeKVKKRW7jzYYU1oyKcgFepTSAWPCsFIP0QXJfUpEtUFfPi5-dmMf5xgKN5jOha6IbWF7Z78WE8wuGF80cAs-jgOEuXAhl72ZXRbMsejMWByWYE__TNo4DEtw9kf_MXrQGp_gyfm9RPs31_urd-XNp7fvr17flFbshCiJIjsAJbhoZFXLXGI7JZlVYLChdcupYKC44A0hqmat4aymtFW4YQJwzS7Rq9V2XOoBGpunnIzX45T3mY46Gqf_7gTX6y7eappvI6jMBs_PBlP8tkCa9eCSBe9NgLgkXSlcccHUP0GKuVRUnkC-gnaKKU3Q_pqGYH2KT_-MT5_i02t8Wfbsz01-i855ZUCtwJ3zcPwvU73_8JlWRGTti1Xbu66_cxPolU7ROpiPOmehmZbZ5zs-fbsQ</recordid><startdate>20071215</startdate><enddate>20071215</enddate><creator>Becker, David L.</creator><creator>Webb, Kevin F.</creator><creator>Thrasivoulou, Christopher</creator><creator>Lin, Chih‐Chi</creator><creator>Nadershahi, Roxana</creator><creator>Tsakiri, Niki</creator><creator>Cook, Jeremy E.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071215</creationdate><title>Multiphoton imaging of chick retinal development in relation to gap junctional communication</title><author>Becker, David L. ; Webb, Kevin F. ; Thrasivoulou, Christopher ; Lin, Chih‐Chi ; Nadershahi, Roxana ; Tsakiri, Niki ; Cook, Jeremy E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5855-1918ee9545d76b785538973c9ea0a2bf4253e9454d119b3fa43b22f90d35e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Carbocyanines</topic><topic>Cell Communication - physiology</topic><topic>Cell Cycle - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cellular</topic><topic>Chick Embryo</topic><topic>Connexin 43 - metabolism</topic><topic>Culture Media</topic><topic>Electroporation</topic><topic>Gap Junctions - physiology</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Image Processing, Computer-Assisted</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Fluorescence, Multiphoton</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Retina - cytology</topic><topic>Retina - embryology</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - physiology</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, David L.</creatorcontrib><creatorcontrib>Webb, Kevin F.</creatorcontrib><creatorcontrib>Thrasivoulou, Christopher</creatorcontrib><creatorcontrib>Lin, Chih‐Chi</creatorcontrib><creatorcontrib>Nadershahi, Roxana</creatorcontrib><creatorcontrib>Tsakiri, Niki</creatorcontrib><creatorcontrib>Cook, Jeremy E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, David L.</au><au>Webb, Kevin F.</au><au>Thrasivoulou, Christopher</au><au>Lin, Chih‐Chi</au><au>Nadershahi, Roxana</au><au>Tsakiri, Niki</au><au>Cook, Jeremy E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphoton imaging of chick retinal development in relation to gap junctional communication</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2007-12-15</date><risdate>2007</risdate><volume>585</volume><issue>3</issue><spage>711</spage><epage>719</epage><pages>711-719</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical
ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread
direction during G1, passing through S-phase at its peak and then, on entering G2, returning towards the ventricular surface
where it enters M-phase and divides. We have previously shown that individual saltatory movements of the nucleus correlate
with transient changes in cytosolic calcium concentration within these progenitor cells and that these events spread to neighbouring
progenitors through connexin43 (Cx43) gap junction channels, thereby coordinating the migration of coupled clusters of cells.
Disrupting coupling with pharmacological agents, Cx43-specific antisense oligodeoxynucleotides (asODNs) or dominant negative
Cx43 (dnCx43) inhibits the sharing of calcium events, reducing the number that each cell experiences and significantly slowing
INM. We have developed protocols for imaging migrating progenitor cells by confocal microscopy over relatively short periods,
and by multiphoton microscopy over more extended periods that include complete cell cycles. We find that perturbing gap junctional
communication not only slows the INM of progenitor cells but also apparently prevents them from changing direction at critical
phases of the cell cycle. It also disrupts the migration of young neurons to their appropriate layers after terminal division
and leads to their ectopic differentiation. The ability to perform extended time-lapse imaging over 3D volumes in living retina
using multiphoton microscopy should now allow fundamental mechanisms governing development of the retinal neuroepithelium
to be probed in detail.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>17932156</pmid><doi>10.1113/jphysiol.2007.138776</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2007-12, Vol.585 (3), p.711-719 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2375527 |
source | IngentaConnect Backfiles; Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library; PubMed Central; EZB Electronic Journals Library |
subjects | Animals Carbocyanines Cell Communication - physiology Cell Cycle - physiology Cell Differentiation - physiology Cellular Chick Embryo Connexin 43 - metabolism Culture Media Electroporation Gap Junctions - physiology Green Fluorescent Proteins - metabolism Image Processing, Computer-Assisted Microscopy, Confocal Microscopy, Fluorescence, Multiphoton Neurons - metabolism Neurons - physiology Retina - cytology Retina - embryology Stem Cells - metabolism Stem Cells - physiology Tungsten |
title | Multiphoton imaging of chick retinal development in relation to gap junctional communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphoton%20imaging%20of%20chick%20retinal%20development%20in%20relation%20to%20gap%20junctional%20communication&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Becker,%20David%20L.&rft.date=2007-12-15&rft.volume=585&rft.issue=3&rft.spage=711&rft.epage=719&rft.pages=711-719&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.138776&rft_dat=%3Cproquest_pubme%3E20479279%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20479279&rft_id=info:pmid/17932156&rfr_iscdi=true |