Multiphoton imaging of chick retinal development in relation to gap junctional communication

Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread direction during G1, passing through S-phase at its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2007-12, Vol.585 (3), p.711-719
Hauptverfasser: Becker, David L., Webb, Kevin F., Thrasivoulou, Christopher, Lin, Chih‐Chi, Nadershahi, Roxana, Tsakiri, Niki, Cook, Jeremy E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 719
container_issue 3
container_start_page 711
container_title The Journal of physiology
container_volume 585
creator Becker, David L.
Webb, Kevin F.
Thrasivoulou, Christopher
Lin, Chih‐Chi
Nadershahi, Roxana
Tsakiri, Niki
Cook, Jeremy E.
description Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread direction during G1, passing through S-phase at its peak and then, on entering G2, returning towards the ventricular surface where it enters M-phase and divides. We have previously shown that individual saltatory movements of the nucleus correlate with transient changes in cytosolic calcium concentration within these progenitor cells and that these events spread to neighbouring progenitors through connexin43 (Cx43) gap junction channels, thereby coordinating the migration of coupled clusters of cells. Disrupting coupling with pharmacological agents, Cx43-specific antisense oligodeoxynucleotides (asODNs) or dominant negative Cx43 (dnCx43) inhibits the sharing of calcium events, reducing the number that each cell experiences and significantly slowing INM. We have developed protocols for imaging migrating progenitor cells by confocal microscopy over relatively short periods, and by multiphoton microscopy over more extended periods that include complete cell cycles. We find that perturbing gap junctional communication not only slows the INM of progenitor cells but also apparently prevents them from changing direction at critical phases of the cell cycle. It also disrupts the migration of young neurons to their appropriate layers after terminal division and leads to their ectopic differentiation. The ability to perform extended time-lapse imaging over 3D volumes in living retina using multiphoton microscopy should now allow fundamental mechanisms governing development of the retinal neuroepithelium to be probed in detail.
doi_str_mv 10.1113/jphysiol.2007.138776
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2375527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20479279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5855-1918ee9545d76b785538973c9ea0a2bf4253e9454d119b3fa43b22f90d35e0b3</originalsourceid><addsrcrecordid>eNqNkcuO1DAQRS0EYpqBP0AoK1il8TNub5DQaHhpECx6iWQ5TiVx49ghTmbUf4-bNK8VrCxXnXtVVRehpwRvCSHs5WHsj8lFv6UYyy1hOymre2hDeKVKKRW7jzYYU1oyKcgFepTSAWPCsFIP0QXJfUpEtUFfPi5-dmMf5xgKN5jOha6IbWF7Z78WE8wuGF80cAs-jgOEuXAhl72ZXRbMsejMWByWYE__TNo4DEtw9kf_MXrQGp_gyfm9RPs31_urd-XNp7fvr17flFbshCiJIjsAJbhoZFXLXGI7JZlVYLChdcupYKC44A0hqmat4aymtFW4YQJwzS7Rq9V2XOoBGpunnIzX45T3mY46Gqf_7gTX6y7eappvI6jMBs_PBlP8tkCa9eCSBe9NgLgkXSlcccHUP0GKuVRUnkC-gnaKKU3Q_pqGYH2KT_-MT5_i02t8Wfbsz01-i855ZUCtwJ3zcPwvU73_8JlWRGTti1Xbu66_cxPolU7ROpiPOmehmZbZ5zs-fbsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20479279</pqid></control><display><type>article</type><title>Multiphoton imaging of chick retinal development in relation to gap junctional communication</title><source>IngentaConnect Backfiles</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Becker, David L. ; Webb, Kevin F. ; Thrasivoulou, Christopher ; Lin, Chih‐Chi ; Nadershahi, Roxana ; Tsakiri, Niki ; Cook, Jeremy E.</creator><creatorcontrib>Becker, David L. ; Webb, Kevin F. ; Thrasivoulou, Christopher ; Lin, Chih‐Chi ; Nadershahi, Roxana ; Tsakiri, Niki ; Cook, Jeremy E.</creatorcontrib><description>Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread direction during G1, passing through S-phase at its peak and then, on entering G2, returning towards the ventricular surface where it enters M-phase and divides. We have previously shown that individual saltatory movements of the nucleus correlate with transient changes in cytosolic calcium concentration within these progenitor cells and that these events spread to neighbouring progenitors through connexin43 (Cx43) gap junction channels, thereby coordinating the migration of coupled clusters of cells. Disrupting coupling with pharmacological agents, Cx43-specific antisense oligodeoxynucleotides (asODNs) or dominant negative Cx43 (dnCx43) inhibits the sharing of calcium events, reducing the number that each cell experiences and significantly slowing INM. We have developed protocols for imaging migrating progenitor cells by confocal microscopy over relatively short periods, and by multiphoton microscopy over more extended periods that include complete cell cycles. We find that perturbing gap junctional communication not only slows the INM of progenitor cells but also apparently prevents them from changing direction at critical phases of the cell cycle. It also disrupts the migration of young neurons to their appropriate layers after terminal division and leads to their ectopic differentiation. The ability to perform extended time-lapse imaging over 3D volumes in living retina using multiphoton microscopy should now allow fundamental mechanisms governing development of the retinal neuroepithelium to be probed in detail.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.138776</identifier><identifier>PMID: 17932156</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Animals ; Carbocyanines ; Cell Communication - physiology ; Cell Cycle - physiology ; Cell Differentiation - physiology ; Cellular ; Chick Embryo ; Connexin 43 - metabolism ; Culture Media ; Electroporation ; Gap Junctions - physiology ; Green Fluorescent Proteins - metabolism ; Image Processing, Computer-Assisted ; Microscopy, Confocal ; Microscopy, Fluorescence, Multiphoton ; Neurons - metabolism ; Neurons - physiology ; Retina - cytology ; Retina - embryology ; Stem Cells - metabolism ; Stem Cells - physiology ; Tungsten</subject><ispartof>The Journal of physiology, 2007-12, Vol.585 (3), p.711-719</ispartof><rights>2007 The Journal of Physiology © 2007 The Physiological Society</rights><rights>2007 The Authors. Journal compilation © 2007 The Physiological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5855-1918ee9545d76b785538973c9ea0a2bf4253e9454d119b3fa43b22f90d35e0b3</citedby><cites>FETCH-LOGICAL-c5855-1918ee9545d76b785538973c9ea0a2bf4253e9454d119b3fa43b22f90d35e0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375527/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2375527/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17932156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, David L.</creatorcontrib><creatorcontrib>Webb, Kevin F.</creatorcontrib><creatorcontrib>Thrasivoulou, Christopher</creatorcontrib><creatorcontrib>Lin, Chih‐Chi</creatorcontrib><creatorcontrib>Nadershahi, Roxana</creatorcontrib><creatorcontrib>Tsakiri, Niki</creatorcontrib><creatorcontrib>Cook, Jeremy E.</creatorcontrib><title>Multiphoton imaging of chick retinal development in relation to gap junctional communication</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread direction during G1, passing through S-phase at its peak and then, on entering G2, returning towards the ventricular surface where it enters M-phase and divides. We have previously shown that individual saltatory movements of the nucleus correlate with transient changes in cytosolic calcium concentration within these progenitor cells and that these events spread to neighbouring progenitors through connexin43 (Cx43) gap junction channels, thereby coordinating the migration of coupled clusters of cells. Disrupting coupling with pharmacological agents, Cx43-specific antisense oligodeoxynucleotides (asODNs) or dominant negative Cx43 (dnCx43) inhibits the sharing of calcium events, reducing the number that each cell experiences and significantly slowing INM. We have developed protocols for imaging migrating progenitor cells by confocal microscopy over relatively short periods, and by multiphoton microscopy over more extended periods that include complete cell cycles. We find that perturbing gap junctional communication not only slows the INM of progenitor cells but also apparently prevents them from changing direction at critical phases of the cell cycle. It also disrupts the migration of young neurons to their appropriate layers after terminal division and leads to their ectopic differentiation. The ability to perform extended time-lapse imaging over 3D volumes in living retina using multiphoton microscopy should now allow fundamental mechanisms governing development of the retinal neuroepithelium to be probed in detail.</description><subject>Animals</subject><subject>Carbocyanines</subject><subject>Cell Communication - physiology</subject><subject>Cell Cycle - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cellular</subject><subject>Chick Embryo</subject><subject>Connexin 43 - metabolism</subject><subject>Culture Media</subject><subject>Electroporation</subject><subject>Gap Junctions - physiology</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Image Processing, Computer-Assisted</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Fluorescence, Multiphoton</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Retina - cytology</subject><subject>Retina - embryology</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - physiology</subject><subject>Tungsten</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcuO1DAQRS0EYpqBP0AoK1il8TNub5DQaHhpECx6iWQ5TiVx49ghTmbUf4-bNK8VrCxXnXtVVRehpwRvCSHs5WHsj8lFv6UYyy1hOymre2hDeKVKKRW7jzYYU1oyKcgFepTSAWPCsFIP0QXJfUpEtUFfPi5-dmMf5xgKN5jOha6IbWF7Z78WE8wuGF80cAs-jgOEuXAhl72ZXRbMsejMWByWYE__TNo4DEtw9kf_MXrQGp_gyfm9RPs31_urd-XNp7fvr17flFbshCiJIjsAJbhoZFXLXGI7JZlVYLChdcupYKC44A0hqmat4aymtFW4YQJwzS7Rq9V2XOoBGpunnIzX45T3mY46Gqf_7gTX6y7eappvI6jMBs_PBlP8tkCa9eCSBe9NgLgkXSlcccHUP0GKuVRUnkC-gnaKKU3Q_pqGYH2KT_-MT5_i02t8Wfbsz01-i855ZUCtwJ3zcPwvU73_8JlWRGTti1Xbu66_cxPolU7ROpiPOmehmZbZ5zs-fbsQ</recordid><startdate>20071215</startdate><enddate>20071215</enddate><creator>Becker, David L.</creator><creator>Webb, Kevin F.</creator><creator>Thrasivoulou, Christopher</creator><creator>Lin, Chih‐Chi</creator><creator>Nadershahi, Roxana</creator><creator>Tsakiri, Niki</creator><creator>Cook, Jeremy E.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071215</creationdate><title>Multiphoton imaging of chick retinal development in relation to gap junctional communication</title><author>Becker, David L. ; Webb, Kevin F. ; Thrasivoulou, Christopher ; Lin, Chih‐Chi ; Nadershahi, Roxana ; Tsakiri, Niki ; Cook, Jeremy E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5855-1918ee9545d76b785538973c9ea0a2bf4253e9454d119b3fa43b22f90d35e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Carbocyanines</topic><topic>Cell Communication - physiology</topic><topic>Cell Cycle - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cellular</topic><topic>Chick Embryo</topic><topic>Connexin 43 - metabolism</topic><topic>Culture Media</topic><topic>Electroporation</topic><topic>Gap Junctions - physiology</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Image Processing, Computer-Assisted</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Fluorescence, Multiphoton</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Retina - cytology</topic><topic>Retina - embryology</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - physiology</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, David L.</creatorcontrib><creatorcontrib>Webb, Kevin F.</creatorcontrib><creatorcontrib>Thrasivoulou, Christopher</creatorcontrib><creatorcontrib>Lin, Chih‐Chi</creatorcontrib><creatorcontrib>Nadershahi, Roxana</creatorcontrib><creatorcontrib>Tsakiri, Niki</creatorcontrib><creatorcontrib>Cook, Jeremy E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, David L.</au><au>Webb, Kevin F.</au><au>Thrasivoulou, Christopher</au><au>Lin, Chih‐Chi</au><au>Nadershahi, Roxana</au><au>Tsakiri, Niki</au><au>Cook, Jeremy E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphoton imaging of chick retinal development in relation to gap junctional communication</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2007-12-15</date><risdate>2007</risdate><volume>585</volume><issue>3</issue><spage>711</spage><epage>719</epage><pages>711-719</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Neural progenitor cells in the developing retina extend processes that stretch from the basal vitread surface to the apical ventricular surface. During the cell cycle, the nucleus undergoes interkinetic nuclear migration (INM), moving in a vitread direction during G1, passing through S-phase at its peak and then, on entering G2, returning towards the ventricular surface where it enters M-phase and divides. We have previously shown that individual saltatory movements of the nucleus correlate with transient changes in cytosolic calcium concentration within these progenitor cells and that these events spread to neighbouring progenitors through connexin43 (Cx43) gap junction channels, thereby coordinating the migration of coupled clusters of cells. Disrupting coupling with pharmacological agents, Cx43-specific antisense oligodeoxynucleotides (asODNs) or dominant negative Cx43 (dnCx43) inhibits the sharing of calcium events, reducing the number that each cell experiences and significantly slowing INM. We have developed protocols for imaging migrating progenitor cells by confocal microscopy over relatively short periods, and by multiphoton microscopy over more extended periods that include complete cell cycles. We find that perturbing gap junctional communication not only slows the INM of progenitor cells but also apparently prevents them from changing direction at critical phases of the cell cycle. It also disrupts the migration of young neurons to their appropriate layers after terminal division and leads to their ectopic differentiation. The ability to perform extended time-lapse imaging over 3D volumes in living retina using multiphoton microscopy should now allow fundamental mechanisms governing development of the retinal neuroepithelium to be probed in detail.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>17932156</pmid><doi>10.1113/jphysiol.2007.138776</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2007-12, Vol.585 (3), p.711-719
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2375527
source IngentaConnect Backfiles; Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library; PubMed Central; EZB Electronic Journals Library
subjects Animals
Carbocyanines
Cell Communication - physiology
Cell Cycle - physiology
Cell Differentiation - physiology
Cellular
Chick Embryo
Connexin 43 - metabolism
Culture Media
Electroporation
Gap Junctions - physiology
Green Fluorescent Proteins - metabolism
Image Processing, Computer-Assisted
Microscopy, Confocal
Microscopy, Fluorescence, Multiphoton
Neurons - metabolism
Neurons - physiology
Retina - cytology
Retina - embryology
Stem Cells - metabolism
Stem Cells - physiology
Tungsten
title Multiphoton imaging of chick retinal development in relation to gap junctional communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphoton%20imaging%20of%20chick%20retinal%20development%20in%20relation%20to%20gap%20junctional%20communication&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Becker,%20David%20L.&rft.date=2007-12-15&rft.volume=585&rft.issue=3&rft.spage=711&rft.epage=719&rft.pages=711-719&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.138776&rft_dat=%3Cproquest_pubme%3E20479279%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20479279&rft_id=info:pmid/17932156&rfr_iscdi=true