Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area

To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2001-12, Vol.10 (12), p.2485-2497
Hauptverfasser: Courtenay, Elizabeth S., Capp, Michael W., Record, M. Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2497
container_issue 12
container_start_page 2485
container_title Protein science
container_volume 10
creator Courtenay, Elizabeth S.
Capp, Michael W.
Record, M. Thomas
description To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Γμ3) as functions of nondenaturing concentrations of these solutes (0–1 molal). From analysis of Γμ3 using the local‐bulk domain model, we obtain concentration‐independent partition coefficients KnatP that characterize the accumulation of these solutes near native protein (BSA) surface: KnatP,urea= 1.10 ± 0.04, Knat P,SCN − = 2.4 ± 0.2, Knat P,GuH + = 1.60 ± 0.08, relative to Knat P,K + ≡ 1 and Knat P,Cl − = 1.0 ± 0.08. The relative magnitudes of KnatP are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (KnatP) with those determined by us previously for unfolded protein and alanine‐based peptide surface KunfP, we dissect KP into contributions from polar peptide backbone and other types of protein surface. For globular protein‐urea interactions, we find KnatP,urea = KunfP,urea. We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of KP and the change in protein ASA.
doi_str_mv 10.1110/ps.ps.20801
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2374034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72287960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4205-954ae980a2de4a9c51be3360da5a2e38ac8551050a8684a30a28115f575101943</originalsourceid><addsrcrecordid>eNp9kc2KFDEQxxtR3NnVk3fJyYv0ms_utAdBFleFhZVlBW-hJl09E-lO2qTbYW4-gs_j4_gkZj5c9SIUVCr_X_2roIriCaPnjDH6YkznOTjVlN0rFkxWTamb6tP9YkGbipVaVPqkOE3pM6VUMi4eFieM1Uw2rFoUP27XGIfQbj0MziYSOuL8hBHs5ILf13NEIOBbsprBu9Z5Nw8kQT8lsnHTmowxTOg8SXPswOJLcoM97LvXbiRLnDaIWQ39PCHBrkObO4O_68vZYkqY9kPsGvwqv7OwgbzIz2_fwe50t-zx9wwCeadHxYMO-oSPj_ms-Hj55vbiXXl1_fb9xeur0kpOVdkoCdhoCrxFCY1VbIlCVLQFBRyFBquVYlRR0JWWIDKoGVOdqvMva6Q4K14dfMd5OWBr0U8RejNGN0DcmgDO_Kt4tzar8NVwUUsqdgbPjgYxfJkxTWZwyWLfg8cwJ1Nzruumohl8fgBtDClF7O6GMGp2tzZj2sX-1pl--vdef9jjcTPAD8DG9bj9n5f5cHPNKJdaiV9AD7x-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72287960</pqid></control><display><type>article</type><title>Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Courtenay, Elizabeth S. ; Capp, Michael W. ; Record, M. Thomas</creator><creatorcontrib>Courtenay, Elizabeth S. ; Capp, Michael W. ; Record, M. Thomas</creatorcontrib><description>To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Γμ3) as functions of nondenaturing concentrations of these solutes (0–1 molal). From analysis of Γμ3 using the local‐bulk domain model, we obtain concentration‐independent partition coefficients KnatP that characterize the accumulation of these solutes near native protein (BSA) surface: KnatP,urea= 1.10 ± 0.04, Knat P,SCN − = 2.4 ± 0.2, Knat P,GuH + = 1.60 ± 0.08, relative to Knat P,K + ≡ 1 and Knat P,Cl − = 1.0 ± 0.08. The relative magnitudes of KnatP are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (KnatP) with those determined by us previously for unfolded protein and alanine‐based peptide surface KunfP, we dissect KP into contributions from polar peptide backbone and other types of protein surface. For globular protein‐urea interactions, we find KnatP,urea = KunfP,urea. We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of KP and the change in protein ASA.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.ps.20801</identifier><identifier>PMID: 11714916</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Cattle ; Dose-Response Relationship, Drug ; Guanidine - chemistry ; Guanidine - metabolism ; Guanidines - chemistry ; Guanidines - metabolism ; guanidinium chloride ; guanidinium thiocyanate ; Hofmeister Series ; Models, Theoretical ; Osmolar Concentration ; peptide backbone ; Potassium Chloride - chemistry ; Preferential interactions ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; protein water‐accessible surface area ; Serum Albumin - chemistry ; Serum Albumin - metabolism ; Thermodynamics ; Thiocyanates - chemistry ; Thiocyanates - metabolism ; urea ; Urea - chemistry ; Urea - metabolism ; Water - chemistry ; Water - metabolism</subject><ispartof>Protein science, 2001-12, Vol.10 (12), p.2485-2497</ispartof><rights>Copyright © 2001 The Protein Society</rights><rights>Copyright © Copyright 2001 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4205-954ae980a2de4a9c51be3360da5a2e38ac8551050a8684a30a28115f575101943</citedby><cites>FETCH-LOGICAL-c4205-954ae980a2de4a9c51be3360da5a2e38ac8551050a8684a30a28115f575101943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374034/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374034/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,1434,27926,27927,45576,45577,46411,46835,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11714916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Courtenay, Elizabeth S.</creatorcontrib><creatorcontrib>Capp, Michael W.</creatorcontrib><creatorcontrib>Record, M. Thomas</creatorcontrib><title>Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Γμ3) as functions of nondenaturing concentrations of these solutes (0–1 molal). From analysis of Γμ3 using the local‐bulk domain model, we obtain concentration‐independent partition coefficients KnatP that characterize the accumulation of these solutes near native protein (BSA) surface: KnatP,urea= 1.10 ± 0.04, Knat P,SCN − = 2.4 ± 0.2, Knat P,GuH + = 1.60 ± 0.08, relative to Knat P,K + ≡ 1 and Knat P,Cl − = 1.0 ± 0.08. The relative magnitudes of KnatP are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (KnatP) with those determined by us previously for unfolded protein and alanine‐based peptide surface KunfP, we dissect KP into contributions from polar peptide backbone and other types of protein surface. For globular protein‐urea interactions, we find KnatP,urea = KunfP,urea. We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of KP and the change in protein ASA.</description><subject>Animals</subject><subject>Cattle</subject><subject>Dose-Response Relationship, Drug</subject><subject>Guanidine - chemistry</subject><subject>Guanidine - metabolism</subject><subject>Guanidines - chemistry</subject><subject>Guanidines - metabolism</subject><subject>guanidinium chloride</subject><subject>guanidinium thiocyanate</subject><subject>Hofmeister Series</subject><subject>Models, Theoretical</subject><subject>Osmolar Concentration</subject><subject>peptide backbone</subject><subject>Potassium Chloride - chemistry</subject><subject>Preferential interactions</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>protein water‐accessible surface area</subject><subject>Serum Albumin - chemistry</subject><subject>Serum Albumin - metabolism</subject><subject>Thermodynamics</subject><subject>Thiocyanates - chemistry</subject><subject>Thiocyanates - metabolism</subject><subject>urea</subject><subject>Urea - chemistry</subject><subject>Urea - metabolism</subject><subject>Water - chemistry</subject><subject>Water - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2KFDEQxxtR3NnVk3fJyYv0ms_utAdBFleFhZVlBW-hJl09E-lO2qTbYW4-gs_j4_gkZj5c9SIUVCr_X_2roIriCaPnjDH6YkznOTjVlN0rFkxWTamb6tP9YkGbipVaVPqkOE3pM6VUMi4eFieM1Uw2rFoUP27XGIfQbj0MziYSOuL8hBHs5ILf13NEIOBbsprBu9Z5Nw8kQT8lsnHTmowxTOg8SXPswOJLcoM97LvXbiRLnDaIWQ39PCHBrkObO4O_68vZYkqY9kPsGvwqv7OwgbzIz2_fwe50t-zx9wwCeadHxYMO-oSPj_ms-Hj55vbiXXl1_fb9xeur0kpOVdkoCdhoCrxFCY1VbIlCVLQFBRyFBquVYlRR0JWWIDKoGVOdqvMva6Q4K14dfMd5OWBr0U8RejNGN0DcmgDO_Kt4tzar8NVwUUsqdgbPjgYxfJkxTWZwyWLfg8cwJ1Nzruumohl8fgBtDClF7O6GMGp2tzZj2sX-1pl--vdef9jjcTPAD8DG9bj9n5f5cHPNKJdaiV9AD7x-</recordid><startdate>200112</startdate><enddate>200112</enddate><creator>Courtenay, Elizabeth S.</creator><creator>Capp, Michael W.</creator><creator>Record, M. Thomas</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200112</creationdate><title>Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area</title><author>Courtenay, Elizabeth S. ; Capp, Michael W. ; Record, M. Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4205-954ae980a2de4a9c51be3360da5a2e38ac8551050a8684a30a28115f575101943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Dose-Response Relationship, Drug</topic><topic>Guanidine - chemistry</topic><topic>Guanidine - metabolism</topic><topic>Guanidines - chemistry</topic><topic>Guanidines - metabolism</topic><topic>guanidinium chloride</topic><topic>guanidinium thiocyanate</topic><topic>Hofmeister Series</topic><topic>Models, Theoretical</topic><topic>Osmolar Concentration</topic><topic>peptide backbone</topic><topic>Potassium Chloride - chemistry</topic><topic>Preferential interactions</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>protein water‐accessible surface area</topic><topic>Serum Albumin - chemistry</topic><topic>Serum Albumin - metabolism</topic><topic>Thermodynamics</topic><topic>Thiocyanates - chemistry</topic><topic>Thiocyanates - metabolism</topic><topic>urea</topic><topic>Urea - chemistry</topic><topic>Urea - metabolism</topic><topic>Water - chemistry</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courtenay, Elizabeth S.</creatorcontrib><creatorcontrib>Capp, Michael W.</creatorcontrib><creatorcontrib>Record, M. Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courtenay, Elizabeth S.</au><au>Capp, Michael W.</au><au>Record, M. Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2001-12</date><risdate>2001</risdate><volume>10</volume><issue>12</issue><spage>2485</spage><epage>2497</epage><pages>2485-2497</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Γμ3) as functions of nondenaturing concentrations of these solutes (0–1 molal). From analysis of Γμ3 using the local‐bulk domain model, we obtain concentration‐independent partition coefficients KnatP that characterize the accumulation of these solutes near native protein (BSA) surface: KnatP,urea= 1.10 ± 0.04, Knat P,SCN − = 2.4 ± 0.2, Knat P,GuH + = 1.60 ± 0.08, relative to Knat P,K + ≡ 1 and Knat P,Cl − = 1.0 ± 0.08. The relative magnitudes of KnatP are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (KnatP) with those determined by us previously for unfolded protein and alanine‐based peptide surface KunfP, we dissect KP into contributions from polar peptide backbone and other types of protein surface. For globular protein‐urea interactions, we find KnatP,urea = KunfP,urea. We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of KP and the change in protein ASA.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>11714916</pmid><doi>10.1110/ps.ps.20801</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2001-12, Vol.10 (12), p.2485-2497
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2374034
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Cattle
Dose-Response Relationship, Drug
Guanidine - chemistry
Guanidine - metabolism
Guanidines - chemistry
Guanidines - metabolism
guanidinium chloride
guanidinium thiocyanate
Hofmeister Series
Models, Theoretical
Osmolar Concentration
peptide backbone
Potassium Chloride - chemistry
Preferential interactions
Protein Binding
Protein Folding
Protein Structure, Tertiary
protein water‐accessible surface area
Serum Albumin - chemistry
Serum Albumin - metabolism
Thermodynamics
Thiocyanates - chemistry
Thiocyanates - metabolism
urea
Urea - chemistry
Urea - metabolism
Water - chemistry
Water - metabolism
title Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20interactions%20of%20urea%20and%20guanidinium%20salts%20with%20protein%20surface:%20Relationship%20between%20solute%20effects%20on%20protein%20processes%20and%20changes%20in%20water%E2%80%90accessible%20surface%20area&rft.jtitle=Protein%20science&rft.au=Courtenay,%20Elizabeth%20S.&rft.date=2001-12&rft.volume=10&rft.issue=12&rft.spage=2485&rft.epage=2497&rft.pages=2485-2497&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.ps.20801&rft_dat=%3Cproquest_pubme%3E72287960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72287960&rft_id=info:pmid/11714916&rfr_iscdi=true