Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area
To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of pr...
Gespeichert in:
Veröffentlicht in: | Protein science 2001-12, Vol.10 (12), p.2485-2497 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2497 |
---|---|
container_issue | 12 |
container_start_page | 2485 |
container_title | Protein science |
container_volume | 10 |
creator | Courtenay, Elizabeth S. Capp, Michael W. Record, M. Thomas |
description | To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Γμ3) as functions of nondenaturing concentrations of these solutes (0–1 molal). From analysis of Γμ3 using the local‐bulk domain model, we obtain concentration‐independent partition coefficients KnatP that characterize the accumulation of these solutes near native protein (BSA) surface: KnatP,urea= 1.10 ± 0.04, Knat P,SCN − = 2.4 ± 0.2, Knat P,GuH + = 1.60 ± 0.08, relative to Knat P,K + ≡ 1 and Knat P,Cl − = 1.0 ± 0.08. The relative magnitudes of KnatP are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (KnatP) with those determined by us previously for unfolded protein and alanine‐based peptide surface KunfP, we dissect KP into contributions from polar peptide backbone and other types of protein surface. For globular protein‐urea interactions, we find KnatP,urea = KunfP,urea. We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of KP and the change in protein ASA. |
doi_str_mv | 10.1110/ps.ps.20801 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2374034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72287960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4205-954ae980a2de4a9c51be3360da5a2e38ac8551050a8684a30a28115f575101943</originalsourceid><addsrcrecordid>eNp9kc2KFDEQxxtR3NnVk3fJyYv0ms_utAdBFleFhZVlBW-hJl09E-lO2qTbYW4-gs_j4_gkZj5c9SIUVCr_X_2roIriCaPnjDH6YkznOTjVlN0rFkxWTamb6tP9YkGbipVaVPqkOE3pM6VUMi4eFieM1Uw2rFoUP27XGIfQbj0MziYSOuL8hBHs5ILf13NEIOBbsprBu9Z5Nw8kQT8lsnHTmowxTOg8SXPswOJLcoM97LvXbiRLnDaIWQ39PCHBrkObO4O_68vZYkqY9kPsGvwqv7OwgbzIz2_fwe50t-zx9wwCeadHxYMO-oSPj_ms-Hj55vbiXXl1_fb9xeur0kpOVdkoCdhoCrxFCY1VbIlCVLQFBRyFBquVYlRR0JWWIDKoGVOdqvMva6Q4K14dfMd5OWBr0U8RejNGN0DcmgDO_Kt4tzar8NVwUUsqdgbPjgYxfJkxTWZwyWLfg8cwJ1Nzruumohl8fgBtDClF7O6GMGp2tzZj2sX-1pl--vdef9jjcTPAD8DG9bj9n5f5cHPNKJdaiV9AD7x-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72287960</pqid></control><display><type>article</type><title>Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Courtenay, Elizabeth S. ; Capp, Michael W. ; Record, M. Thomas</creator><creatorcontrib>Courtenay, Elizabeth S. ; Capp, Michael W. ; Record, M. Thomas</creatorcontrib><description>To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Γμ3) as functions of nondenaturing concentrations of these solutes (0–1 molal). From analysis of Γμ3 using the local‐bulk domain model, we obtain concentration‐independent partition coefficients KnatP that characterize the accumulation of these solutes near native protein (BSA) surface: KnatP,urea= 1.10 ± 0.04, Knat P,SCN − = 2.4 ± 0.2, Knat P,GuH + = 1.60 ± 0.08, relative to Knat P,K + ≡ 1 and Knat P,Cl − = 1.0 ± 0.08. The relative magnitudes of KnatP are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (KnatP) with those determined by us previously for unfolded protein and alanine‐based peptide surface KunfP, we dissect KP into contributions from polar peptide backbone and other types of protein surface. For globular protein‐urea interactions, we find KnatP,urea = KunfP,urea. We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of KP and the change in protein ASA.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.ps.20801</identifier><identifier>PMID: 11714916</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Cattle ; Dose-Response Relationship, Drug ; Guanidine - chemistry ; Guanidine - metabolism ; Guanidines - chemistry ; Guanidines - metabolism ; guanidinium chloride ; guanidinium thiocyanate ; Hofmeister Series ; Models, Theoretical ; Osmolar Concentration ; peptide backbone ; Potassium Chloride - chemistry ; Preferential interactions ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; protein water‐accessible surface area ; Serum Albumin - chemistry ; Serum Albumin - metabolism ; Thermodynamics ; Thiocyanates - chemistry ; Thiocyanates - metabolism ; urea ; Urea - chemistry ; Urea - metabolism ; Water - chemistry ; Water - metabolism</subject><ispartof>Protein science, 2001-12, Vol.10 (12), p.2485-2497</ispartof><rights>Copyright © 2001 The Protein Society</rights><rights>Copyright © Copyright 2001 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4205-954ae980a2de4a9c51be3360da5a2e38ac8551050a8684a30a28115f575101943</citedby><cites>FETCH-LOGICAL-c4205-954ae980a2de4a9c51be3360da5a2e38ac8551050a8684a30a28115f575101943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374034/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374034/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1418,1434,27926,27927,45576,45577,46411,46835,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11714916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Courtenay, Elizabeth S.</creatorcontrib><creatorcontrib>Capp, Michael W.</creatorcontrib><creatorcontrib>Record, M. Thomas</creatorcontrib><title>Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Γμ3) as functions of nondenaturing concentrations of these solutes (0–1 molal). From analysis of Γμ3 using the local‐bulk domain model, we obtain concentration‐independent partition coefficients KnatP that characterize the accumulation of these solutes near native protein (BSA) surface: KnatP,urea= 1.10 ± 0.04, Knat P,SCN − = 2.4 ± 0.2, Knat P,GuH + = 1.60 ± 0.08, relative to Knat P,K + ≡ 1 and Knat P,Cl − = 1.0 ± 0.08. The relative magnitudes of KnatP are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (KnatP) with those determined by us previously for unfolded protein and alanine‐based peptide surface KunfP, we dissect KP into contributions from polar peptide backbone and other types of protein surface. For globular protein‐urea interactions, we find KnatP,urea = KunfP,urea. We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of KP and the change in protein ASA.</description><subject>Animals</subject><subject>Cattle</subject><subject>Dose-Response Relationship, Drug</subject><subject>Guanidine - chemistry</subject><subject>Guanidine - metabolism</subject><subject>Guanidines - chemistry</subject><subject>Guanidines - metabolism</subject><subject>guanidinium chloride</subject><subject>guanidinium thiocyanate</subject><subject>Hofmeister Series</subject><subject>Models, Theoretical</subject><subject>Osmolar Concentration</subject><subject>peptide backbone</subject><subject>Potassium Chloride - chemistry</subject><subject>Preferential interactions</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>protein water‐accessible surface area</subject><subject>Serum Albumin - chemistry</subject><subject>Serum Albumin - metabolism</subject><subject>Thermodynamics</subject><subject>Thiocyanates - chemistry</subject><subject>Thiocyanates - metabolism</subject><subject>urea</subject><subject>Urea - chemistry</subject><subject>Urea - metabolism</subject><subject>Water - chemistry</subject><subject>Water - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2KFDEQxxtR3NnVk3fJyYv0ms_utAdBFleFhZVlBW-hJl09E-lO2qTbYW4-gs_j4_gkZj5c9SIUVCr_X_2roIriCaPnjDH6YkznOTjVlN0rFkxWTamb6tP9YkGbipVaVPqkOE3pM6VUMi4eFieM1Uw2rFoUP27XGIfQbj0MziYSOuL8hBHs5ILf13NEIOBbsprBu9Z5Nw8kQT8lsnHTmowxTOg8SXPswOJLcoM97LvXbiRLnDaIWQ39PCHBrkObO4O_68vZYkqY9kPsGvwqv7OwgbzIz2_fwe50t-zx9wwCeadHxYMO-oSPj_ms-Hj55vbiXXl1_fb9xeur0kpOVdkoCdhoCrxFCY1VbIlCVLQFBRyFBquVYlRR0JWWIDKoGVOdqvMva6Q4K14dfMd5OWBr0U8RejNGN0DcmgDO_Kt4tzar8NVwUUsqdgbPjgYxfJkxTWZwyWLfg8cwJ1Nzruumohl8fgBtDClF7O6GMGp2tzZj2sX-1pl--vdef9jjcTPAD8DG9bj9n5f5cHPNKJdaiV9AD7x-</recordid><startdate>200112</startdate><enddate>200112</enddate><creator>Courtenay, Elizabeth S.</creator><creator>Capp, Michael W.</creator><creator>Record, M. Thomas</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200112</creationdate><title>Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area</title><author>Courtenay, Elizabeth S. ; Capp, Michael W. ; Record, M. Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4205-954ae980a2de4a9c51be3360da5a2e38ac8551050a8684a30a28115f575101943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Dose-Response Relationship, Drug</topic><topic>Guanidine - chemistry</topic><topic>Guanidine - metabolism</topic><topic>Guanidines - chemistry</topic><topic>Guanidines - metabolism</topic><topic>guanidinium chloride</topic><topic>guanidinium thiocyanate</topic><topic>Hofmeister Series</topic><topic>Models, Theoretical</topic><topic>Osmolar Concentration</topic><topic>peptide backbone</topic><topic>Potassium Chloride - chemistry</topic><topic>Preferential interactions</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>protein water‐accessible surface area</topic><topic>Serum Albumin - chemistry</topic><topic>Serum Albumin - metabolism</topic><topic>Thermodynamics</topic><topic>Thiocyanates - chemistry</topic><topic>Thiocyanates - metabolism</topic><topic>urea</topic><topic>Urea - chemistry</topic><topic>Urea - metabolism</topic><topic>Water - chemistry</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courtenay, Elizabeth S.</creatorcontrib><creatorcontrib>Capp, Michael W.</creatorcontrib><creatorcontrib>Record, M. Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courtenay, Elizabeth S.</au><au>Capp, Michael W.</au><au>Record, M. Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2001-12</date><risdate>2001</risdate><volume>10</volume><issue>12</issue><spage>2485</spage><epage>2497</epage><pages>2485-2497</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>To interpret effects of urea and guanidinium (GuH+) salts on processes that involve large changes in protein water‐accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Γμ3) as functions of nondenaturing concentrations of these solutes (0–1 molal). From analysis of Γμ3 using the local‐bulk domain model, we obtain concentration‐independent partition coefficients KnatP that characterize the accumulation of these solutes near native protein (BSA) surface: KnatP,urea= 1.10 ± 0.04, Knat P,SCN − = 2.4 ± 0.2, Knat P,GuH + = 1.60 ± 0.08, relative to Knat P,K + ≡ 1 and Knat P,Cl − = 1.0 ± 0.08. The relative magnitudes of KnatP are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (KnatP) with those determined by us previously for unfolded protein and alanine‐based peptide surface KunfP, we dissect KP into contributions from polar peptide backbone and other types of protein surface. For globular protein‐urea interactions, we find KnatP,urea = KunfP,urea. We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of KP and the change in protein ASA.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>11714916</pmid><doi>10.1110/ps.ps.20801</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2001-12, Vol.10 (12), p.2485-2497 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2374034 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Cattle Dose-Response Relationship, Drug Guanidine - chemistry Guanidine - metabolism Guanidines - chemistry Guanidines - metabolism guanidinium chloride guanidinium thiocyanate Hofmeister Series Models, Theoretical Osmolar Concentration peptide backbone Potassium Chloride - chemistry Preferential interactions Protein Binding Protein Folding Protein Structure, Tertiary protein water‐accessible surface area Serum Albumin - chemistry Serum Albumin - metabolism Thermodynamics Thiocyanates - chemistry Thiocyanates - metabolism urea Urea - chemistry Urea - metabolism Water - chemistry Water - metabolism |
title | Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water‐accessible surface area |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20interactions%20of%20urea%20and%20guanidinium%20salts%20with%20protein%20surface:%20Relationship%20between%20solute%20effects%20on%20protein%20processes%20and%20changes%20in%20water%E2%80%90accessible%20surface%20area&rft.jtitle=Protein%20science&rft.au=Courtenay,%20Elizabeth%20S.&rft.date=2001-12&rft.volume=10&rft.issue=12&rft.spage=2485&rft.epage=2497&rft.pages=2485-2497&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.ps.20801&rft_dat=%3Cproquest_pubme%3E72287960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72287960&rft_id=info:pmid/11714916&rfr_iscdi=true |