Single-domain antibody fragments with high conformational stability

A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2002-03, Vol.11 (3), p.500-15
Hauptverfasser: Dumoulin, Mireille, Conrath, Katja, Van Meirhaeghe, Annemie, Meersman, Filip, Heremans, Karel, Frenken, Leon G J, Muyldermans, Serge, Wyns, Lode, Matagne, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 3
container_start_page 500
container_title Protein science
container_volume 11
creator Dumoulin, Mireille
Conrath, Katja
Van Meirhaeghe, Annemie
Meersman, Filip
Heremans, Karel
Frenken, Leon G J
Muyldermans, Serge
Wyns, Lode
Matagne, André
description A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived from camelid heavy‐chain antibodies with specificities for lysozymes, β‐lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical‐induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two‐state mechanism (N⇋U), where only the native and the denatured states are significantly populated. Thermally‐induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat‐induced denaturation (apparent Tm = 60–80°C), and display high conformational stabilities (ΔG(H2O) = 30–60 kJ mole−1). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy‐chain antibody fragments are of special interest for biotechnological and medical applications.
doi_str_mv 10.1110/ps.34602
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2373476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71451122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4730-c30c558eed30dcabe37f7958a2cc5bd13bae2d6706439c2e10533be5414f208f3</originalsourceid><addsrcrecordid>eNp1kV1vFCEUhonR2LWa-Ac0c2W8mZYDDDA3JrqpH0mTNn4k3hFgmFkMM6ww22b_vbizafWiN4dDeN73HPIi9BLwGQDg820-o4xj8gitgPG2li3_-RitcMuhlpTLE_Qs518YYwaEPkUnAJIJIugKrb_5aQiu7uKo_VTpafYmdvuqT3oY3TTn6tbPm2rjh01l49THNOrZx0mHKs_a-ODn_XP0pNchuxfH8xT9-Hjxff25vrz69GX9_rK2TFBcW4pt00jnOoo7q42johdtIzWxtjEdUKMd6bjAnNHWEge4odS4hgHrCZY9PUXvFt_tzoyus2W9pIPaJj_qtFdRe_X_y-Q3aog3ilBBmeDFgCwGwbvBqZiMVzfkIDz0uzAobZVxihAuSyG8LaI3x6kp_t65PKvRZ-tC0JOLu6wEsAaAkAK-XUCbYs7J9XebAVZ_Y1LbrA4xFfT1vz-5B4-5FOB8AW59cPsHjdT116tybzAuileLotdR6SH5rD5cEAwMMAgu6R939qX-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71451122</pqid></control><display><type>article</type><title>Single-domain antibody fragments with high conformational stability</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dumoulin, Mireille ; Conrath, Katja ; Van Meirhaeghe, Annemie ; Meersman, Filip ; Heremans, Karel ; Frenken, Leon G J ; Muyldermans, Serge ; Wyns, Lode ; Matagne, André</creator><creatorcontrib>Dumoulin, Mireille ; Conrath, Katja ; Van Meirhaeghe, Annemie ; Meersman, Filip ; Heremans, Karel ; Frenken, Leon G J ; Muyldermans, Serge ; Wyns, Lode ; Matagne, André</creatorcontrib><description>A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived from camelid heavy‐chain antibodies with specificities for lysozymes, β‐lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical‐induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two‐state mechanism (N⇋U), where only the native and the denatured states are significantly populated. Thermally‐induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat‐induced denaturation (apparent Tm = 60–80°C), and display high conformational stabilities (ΔG(H2O) = 30–60 kJ mole−1). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy‐chain antibody fragments are of special interest for biotechnological and medical applications.</description><identifier>ISSN: 0961-8368</identifier><identifier>ISSN: 1469-896X</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.34602</identifier><identifier>PMID: 11847273</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Amino Acid Sequence ; Animals ; ANS, 8‐anilino‐1‐naphtalene‐sulfonic acid ; Bacterial Proteins ; beta-Lactamases - immunology ; Biochemistry ; Biochemistry, biophysics &amp; molecular biology ; Biochimie, biophysique &amp; biologie moléculaire ; biophysics ; BSA, bovine serum albumin ; Camel heavy‐chain antibodies ; Camelids, New World ; Camels ; Camelus ; CD, circular dichroism ; CDR, complementary determining region ; circular dichroism ; csm, center of the spectral mass ; Fab, Fv, scFv, and dsFv, antigen‐binding fragment, variable fragment, single‐chain variable fragment, and disulphide stabilized variable fragment of conventional antibodies, respectively ; fluorescence ; Fourier transform infrared spectroscopy ; FTIR, Fourier transform infrared ; GdmCl, guanidinium chloride ; HEPES, N‐(2‐hydroxyethyl)piperazine‐N′‐2‐ethanesulfonic acid ; high pressure ; Hot Temperature ; Humans ; Immunoglobulin Fragments - chemistry ; Immunoglobulin Fragments - immunology ; Immunoglobulin Fragments/chemistry/immunology ; IPTG, isopropyl β‐D‐thiogalactopyranoside ; IR, infrared ; Life sciences ; molecular biology ; Molecular Sequence Data ; MOPS, 3‐N‐morpholinopropanosulfonic acid ; Muramidase - immunology ; Protein Conformation ; Protein Denaturation ; Protein Folding ; protein stability ; Protein Structure, Tertiary ; RU, resonance units ; Sciences du vivant ; Spectrometry, Fluorescence ; Spectroscopy, Fourier Transform Infrared ; SPR, surface plasmon resonance ; surface plasmon resonance ; VH, variable domain of immunoglobulin heavy chain ; VHH, variable domain of camelid heavy‐chain antibody ; VL, variable domain of immunoglobulin light chain</subject><ispartof>Protein science, 2002-03, Vol.11 (3), p.500-15</ispartof><rights>Copyright © 2002 The Protein Society</rights><rights>Copyright © Copyright 2002 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4730-c30c558eed30dcabe37f7958a2cc5bd13bae2d6706439c2e10533be5414f208f3</citedby><cites>FETCH-LOGICAL-c4730-c30c558eed30dcabe37f7958a2cc5bd13bae2d6706439c2e10533be5414f208f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373476/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373476/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11847273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumoulin, Mireille</creatorcontrib><creatorcontrib>Conrath, Katja</creatorcontrib><creatorcontrib>Van Meirhaeghe, Annemie</creatorcontrib><creatorcontrib>Meersman, Filip</creatorcontrib><creatorcontrib>Heremans, Karel</creatorcontrib><creatorcontrib>Frenken, Leon G J</creatorcontrib><creatorcontrib>Muyldermans, Serge</creatorcontrib><creatorcontrib>Wyns, Lode</creatorcontrib><creatorcontrib>Matagne, André</creatorcontrib><title>Single-domain antibody fragments with high conformational stability</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived from camelid heavy‐chain antibodies with specificities for lysozymes, β‐lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical‐induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two‐state mechanism (N⇋U), where only the native and the denatured states are significantly populated. Thermally‐induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat‐induced denaturation (apparent Tm = 60–80°C), and display high conformational stabilities (ΔG(H2O) = 30–60 kJ mole−1). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy‐chain antibody fragments are of special interest for biotechnological and medical applications.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>ANS, 8‐anilino‐1‐naphtalene‐sulfonic acid</subject><subject>Bacterial Proteins</subject><subject>beta-Lactamases - immunology</subject><subject>Biochemistry</subject><subject>Biochemistry, biophysics &amp; molecular biology</subject><subject>Biochimie, biophysique &amp; biologie moléculaire</subject><subject>biophysics</subject><subject>BSA, bovine serum albumin</subject><subject>Camel heavy‐chain antibodies</subject><subject>Camelids, New World</subject><subject>Camels</subject><subject>Camelus</subject><subject>CD, circular dichroism</subject><subject>CDR, complementary determining region</subject><subject>circular dichroism</subject><subject>csm, center of the spectral mass</subject><subject>Fab, Fv, scFv, and dsFv, antigen‐binding fragment, variable fragment, single‐chain variable fragment, and disulphide stabilized variable fragment of conventional antibodies, respectively</subject><subject>fluorescence</subject><subject>Fourier transform infrared spectroscopy</subject><subject>FTIR, Fourier transform infrared</subject><subject>GdmCl, guanidinium chloride</subject><subject>HEPES, N‐(2‐hydroxyethyl)piperazine‐N′‐2‐ethanesulfonic acid</subject><subject>high pressure</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Immunoglobulin Fragments - chemistry</subject><subject>Immunoglobulin Fragments - immunology</subject><subject>Immunoglobulin Fragments/chemistry/immunology</subject><subject>IPTG, isopropyl β‐D‐thiogalactopyranoside</subject><subject>IR, infrared</subject><subject>Life sciences</subject><subject>molecular biology</subject><subject>Molecular Sequence Data</subject><subject>MOPS, 3‐N‐morpholinopropanosulfonic acid</subject><subject>Muramidase - immunology</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein Folding</subject><subject>protein stability</subject><subject>Protein Structure, Tertiary</subject><subject>RU, resonance units</subject><subject>Sciences du vivant</subject><subject>Spectrometry, Fluorescence</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>SPR, surface plasmon resonance</subject><subject>surface plasmon resonance</subject><subject>VH, variable domain of immunoglobulin heavy chain</subject><subject>VHH, variable domain of camelid heavy‐chain antibody</subject><subject>VL, variable domain of immunoglobulin light chain</subject><issn>0961-8368</issn><issn>1469-896X</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1vFCEUhonR2LWa-Ac0c2W8mZYDDDA3JrqpH0mTNn4k3hFgmFkMM6ww22b_vbizafWiN4dDeN73HPIi9BLwGQDg820-o4xj8gitgPG2li3_-RitcMuhlpTLE_Qs518YYwaEPkUnAJIJIugKrb_5aQiu7uKo_VTpafYmdvuqT3oY3TTn6tbPm2rjh01l49THNOrZx0mHKs_a-ODn_XP0pNchuxfH8xT9-Hjxff25vrz69GX9_rK2TFBcW4pt00jnOoo7q42johdtIzWxtjEdUKMd6bjAnNHWEge4odS4hgHrCZY9PUXvFt_tzoyus2W9pIPaJj_qtFdRe_X_y-Q3aog3ilBBmeDFgCwGwbvBqZiMVzfkIDz0uzAobZVxihAuSyG8LaI3x6kp_t65PKvRZ-tC0JOLu6wEsAaAkAK-XUCbYs7J9XebAVZ_Y1LbrA4xFfT1vz-5B4-5FOB8AW59cPsHjdT116tybzAuileLotdR6SH5rD5cEAwMMAgu6R939qX-</recordid><startdate>200203</startdate><enddate>200203</enddate><creator>Dumoulin, Mireille</creator><creator>Conrath, Katja</creator><creator>Van Meirhaeghe, Annemie</creator><creator>Meersman, Filip</creator><creator>Heremans, Karel</creator><creator>Frenken, Leon G J</creator><creator>Muyldermans, Serge</creator><creator>Wyns, Lode</creator><creator>Matagne, André</creator><general>Cold Spring Harbor Laboratory Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>Q33</scope><scope>5PM</scope></search><sort><creationdate>200203</creationdate><title>Single-domain antibody fragments with high conformational stability</title><author>Dumoulin, Mireille ; Conrath, Katja ; Van Meirhaeghe, Annemie ; Meersman, Filip ; Heremans, Karel ; Frenken, Leon G J ; Muyldermans, Serge ; Wyns, Lode ; Matagne, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4730-c30c558eed30dcabe37f7958a2cc5bd13bae2d6706439c2e10533be5414f208f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>ANS, 8‐anilino‐1‐naphtalene‐sulfonic acid</topic><topic>Bacterial Proteins</topic><topic>beta-Lactamases - immunology</topic><topic>Biochemistry</topic><topic>Biochemistry, biophysics &amp; molecular biology</topic><topic>Biochimie, biophysique &amp; biologie moléculaire</topic><topic>biophysics</topic><topic>BSA, bovine serum albumin</topic><topic>Camel heavy‐chain antibodies</topic><topic>Camelids, New World</topic><topic>Camels</topic><topic>Camelus</topic><topic>CD, circular dichroism</topic><topic>CDR, complementary determining region</topic><topic>circular dichroism</topic><topic>csm, center of the spectral mass</topic><topic>Fab, Fv, scFv, and dsFv, antigen‐binding fragment, variable fragment, single‐chain variable fragment, and disulphide stabilized variable fragment of conventional antibodies, respectively</topic><topic>fluorescence</topic><topic>Fourier transform infrared spectroscopy</topic><topic>FTIR, Fourier transform infrared</topic><topic>GdmCl, guanidinium chloride</topic><topic>HEPES, N‐(2‐hydroxyethyl)piperazine‐N′‐2‐ethanesulfonic acid</topic><topic>high pressure</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Immunoglobulin Fragments - chemistry</topic><topic>Immunoglobulin Fragments - immunology</topic><topic>Immunoglobulin Fragments/chemistry/immunology</topic><topic>IPTG, isopropyl β‐D‐thiogalactopyranoside</topic><topic>IR, infrared</topic><topic>Life sciences</topic><topic>molecular biology</topic><topic>Molecular Sequence Data</topic><topic>MOPS, 3‐N‐morpholinopropanosulfonic acid</topic><topic>Muramidase - immunology</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein Folding</topic><topic>protein stability</topic><topic>Protein Structure, Tertiary</topic><topic>RU, resonance units</topic><topic>Sciences du vivant</topic><topic>Spectrometry, Fluorescence</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>SPR, surface plasmon resonance</topic><topic>surface plasmon resonance</topic><topic>VH, variable domain of immunoglobulin heavy chain</topic><topic>VHH, variable domain of camelid heavy‐chain antibody</topic><topic>VL, variable domain of immunoglobulin light chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumoulin, Mireille</creatorcontrib><creatorcontrib>Conrath, Katja</creatorcontrib><creatorcontrib>Van Meirhaeghe, Annemie</creatorcontrib><creatorcontrib>Meersman, Filip</creatorcontrib><creatorcontrib>Heremans, Karel</creatorcontrib><creatorcontrib>Frenken, Leon G J</creatorcontrib><creatorcontrib>Muyldermans, Serge</creatorcontrib><creatorcontrib>Wyns, Lode</creatorcontrib><creatorcontrib>Matagne, André</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumoulin, Mireille</au><au>Conrath, Katja</au><au>Van Meirhaeghe, Annemie</au><au>Meersman, Filip</au><au>Heremans, Karel</au><au>Frenken, Leon G J</au><au>Muyldermans, Serge</au><au>Wyns, Lode</au><au>Matagne, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-domain antibody fragments with high conformational stability</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2002-03</date><risdate>2002</risdate><volume>11</volume><issue>3</issue><spage>500</spage><epage>15</epage><pages>500-15</pages><issn>0961-8368</issn><issn>1469-896X</issn><eissn>1469-896X</eissn><abstract>A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived from camelid heavy‐chain antibodies with specificities for lysozymes, β‐lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical‐induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two‐state mechanism (N⇋U), where only the native and the denatured states are significantly populated. Thermally‐induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat‐induced denaturation (apparent Tm = 60–80°C), and display high conformational stabilities (ΔG(H2O) = 30–60 kJ mole−1). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy‐chain antibody fragments are of special interest for biotechnological and medical applications.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>11847273</pmid><doi>10.1110/ps.34602</doi><tpages>-484</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2002-03, Vol.11 (3), p.500-15
issn 0961-8368
1469-896X
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2373476
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Animals
ANS, 8‐anilino‐1‐naphtalene‐sulfonic acid
Bacterial Proteins
beta-Lactamases - immunology
Biochemistry
Biochemistry, biophysics & molecular biology
Biochimie, biophysique & biologie moléculaire
biophysics
BSA, bovine serum albumin
Camel heavy‐chain antibodies
Camelids, New World
Camels
Camelus
CD, circular dichroism
CDR, complementary determining region
circular dichroism
csm, center of the spectral mass
Fab, Fv, scFv, and dsFv, antigen‐binding fragment, variable fragment, single‐chain variable fragment, and disulphide stabilized variable fragment of conventional antibodies, respectively
fluorescence
Fourier transform infrared spectroscopy
FTIR, Fourier transform infrared
GdmCl, guanidinium chloride
HEPES, N‐(2‐hydroxyethyl)piperazine‐N′‐2‐ethanesulfonic acid
high pressure
Hot Temperature
Humans
Immunoglobulin Fragments - chemistry
Immunoglobulin Fragments - immunology
Immunoglobulin Fragments/chemistry/immunology
IPTG, isopropyl β‐D‐thiogalactopyranoside
IR, infrared
Life sciences
molecular biology
Molecular Sequence Data
MOPS, 3‐N‐morpholinopropanosulfonic acid
Muramidase - immunology
Protein Conformation
Protein Denaturation
Protein Folding
protein stability
Protein Structure, Tertiary
RU, resonance units
Sciences du vivant
Spectrometry, Fluorescence
Spectroscopy, Fourier Transform Infrared
SPR, surface plasmon resonance
surface plasmon resonance
VH, variable domain of immunoglobulin heavy chain
VHH, variable domain of camelid heavy‐chain antibody
VL, variable domain of immunoglobulin light chain
title Single-domain antibody fragments with high conformational stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-domain%20antibody%20fragments%20with%20high%20conformational%20stability&rft.jtitle=Protein%20science&rft.au=Dumoulin,%20Mireille&rft.date=2002-03&rft.volume=11&rft.issue=3&rft.spage=500&rft.epage=15&rft.pages=500-15&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.34602&rft_dat=%3Cproquest_pubme%3E71451122%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71451122&rft_id=info:pmid/11847273&rfr_iscdi=true