Single-domain antibody fragments with high conformational stability
A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived...
Gespeichert in:
Veröffentlicht in: | Protein science 2002-03, Vol.11 (3), p.500-15 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 3 |
container_start_page | 500 |
container_title | Protein science |
container_volume | 11 |
creator | Dumoulin, Mireille Conrath, Katja Van Meirhaeghe, Annemie Meersman, Filip Heremans, Karel Frenken, Leon G J Muyldermans, Serge Wyns, Lode Matagne, André |
description | A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived from camelid heavy‐chain antibodies with specificities for lysozymes, β‐lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical‐induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two‐state mechanism (N⇋U), where only the native and the denatured states are significantly populated. Thermally‐induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat‐induced denaturation (apparent Tm = 60–80°C), and display high conformational stabilities (ΔG(H2O) = 30–60 kJ mole−1). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy‐chain antibody fragments are of special interest for biotechnological and medical applications. |
doi_str_mv | 10.1110/ps.34602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2373476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71451122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4730-c30c558eed30dcabe37f7958a2cc5bd13bae2d6706439c2e10533be5414f208f3</originalsourceid><addsrcrecordid>eNp1kV1vFCEUhonR2LWa-Ac0c2W8mZYDDDA3JrqpH0mTNn4k3hFgmFkMM6ww22b_vbizafWiN4dDeN73HPIi9BLwGQDg820-o4xj8gitgPG2li3_-RitcMuhlpTLE_Qs518YYwaEPkUnAJIJIugKrb_5aQiu7uKo_VTpafYmdvuqT3oY3TTn6tbPm2rjh01l49THNOrZx0mHKs_a-ODn_XP0pNchuxfH8xT9-Hjxff25vrz69GX9_rK2TFBcW4pt00jnOoo7q42johdtIzWxtjEdUKMd6bjAnNHWEge4odS4hgHrCZY9PUXvFt_tzoyus2W9pIPaJj_qtFdRe_X_y-Q3aog3ilBBmeDFgCwGwbvBqZiMVzfkIDz0uzAobZVxihAuSyG8LaI3x6kp_t65PKvRZ-tC0JOLu6wEsAaAkAK-XUCbYs7J9XebAVZ_Y1LbrA4xFfT1vz-5B4-5FOB8AW59cPsHjdT116tybzAuileLotdR6SH5rD5cEAwMMAgu6R939qX-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71451122</pqid></control><display><type>article</type><title>Single-domain antibody fragments with high conformational stability</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dumoulin, Mireille ; Conrath, Katja ; Van Meirhaeghe, Annemie ; Meersman, Filip ; Heremans, Karel ; Frenken, Leon G J ; Muyldermans, Serge ; Wyns, Lode ; Matagne, André</creator><creatorcontrib>Dumoulin, Mireille ; Conrath, Katja ; Van Meirhaeghe, Annemie ; Meersman, Filip ; Heremans, Karel ; Frenken, Leon G J ; Muyldermans, Serge ; Wyns, Lode ; Matagne, André</creatorcontrib><description>A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived from camelid heavy‐chain antibodies with specificities for lysozymes, β‐lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical‐induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two‐state mechanism (N⇋U), where only the native and the denatured states are significantly populated. Thermally‐induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat‐induced denaturation (apparent Tm = 60–80°C), and display high conformational stabilities (ΔG(H2O) = 30–60 kJ mole−1). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy‐chain antibody fragments are of special interest for biotechnological and medical applications.</description><identifier>ISSN: 0961-8368</identifier><identifier>ISSN: 1469-896X</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1110/ps.34602</identifier><identifier>PMID: 11847273</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Amino Acid Sequence ; Animals ; ANS, 8‐anilino‐1‐naphtalene‐sulfonic acid ; Bacterial Proteins ; beta-Lactamases - immunology ; Biochemistry ; Biochemistry, biophysics & molecular biology ; Biochimie, biophysique & biologie moléculaire ; biophysics ; BSA, bovine serum albumin ; Camel heavy‐chain antibodies ; Camelids, New World ; Camels ; Camelus ; CD, circular dichroism ; CDR, complementary determining region ; circular dichroism ; csm, center of the spectral mass ; Fab, Fv, scFv, and dsFv, antigen‐binding fragment, variable fragment, single‐chain variable fragment, and disulphide stabilized variable fragment of conventional antibodies, respectively ; fluorescence ; Fourier transform infrared spectroscopy ; FTIR, Fourier transform infrared ; GdmCl, guanidinium chloride ; HEPES, N‐(2‐hydroxyethyl)piperazine‐N′‐2‐ethanesulfonic acid ; high pressure ; Hot Temperature ; Humans ; Immunoglobulin Fragments - chemistry ; Immunoglobulin Fragments - immunology ; Immunoglobulin Fragments/chemistry/immunology ; IPTG, isopropyl β‐D‐thiogalactopyranoside ; IR, infrared ; Life sciences ; molecular biology ; Molecular Sequence Data ; MOPS, 3‐N‐morpholinopropanosulfonic acid ; Muramidase - immunology ; Protein Conformation ; Protein Denaturation ; Protein Folding ; protein stability ; Protein Structure, Tertiary ; RU, resonance units ; Sciences du vivant ; Spectrometry, Fluorescence ; Spectroscopy, Fourier Transform Infrared ; SPR, surface plasmon resonance ; surface plasmon resonance ; VH, variable domain of immunoglobulin heavy chain ; VHH, variable domain of camelid heavy‐chain antibody ; VL, variable domain of immunoglobulin light chain</subject><ispartof>Protein science, 2002-03, Vol.11 (3), p.500-15</ispartof><rights>Copyright © 2002 The Protein Society</rights><rights>Copyright © Copyright 2002 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4730-c30c558eed30dcabe37f7958a2cc5bd13bae2d6706439c2e10533be5414f208f3</citedby><cites>FETCH-LOGICAL-c4730-c30c558eed30dcabe37f7958a2cc5bd13bae2d6706439c2e10533be5414f208f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373476/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373476/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11847273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumoulin, Mireille</creatorcontrib><creatorcontrib>Conrath, Katja</creatorcontrib><creatorcontrib>Van Meirhaeghe, Annemie</creatorcontrib><creatorcontrib>Meersman, Filip</creatorcontrib><creatorcontrib>Heremans, Karel</creatorcontrib><creatorcontrib>Frenken, Leon G J</creatorcontrib><creatorcontrib>Muyldermans, Serge</creatorcontrib><creatorcontrib>Wyns, Lode</creatorcontrib><creatorcontrib>Matagne, André</creatorcontrib><title>Single-domain antibody fragments with high conformational stability</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived from camelid heavy‐chain antibodies with specificities for lysozymes, β‐lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical‐induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two‐state mechanism (N⇋U), where only the native and the denatured states are significantly populated. Thermally‐induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat‐induced denaturation (apparent Tm = 60–80°C), and display high conformational stabilities (ΔG(H2O) = 30–60 kJ mole−1). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy‐chain antibody fragments are of special interest for biotechnological and medical applications.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>ANS, 8‐anilino‐1‐naphtalene‐sulfonic acid</subject><subject>Bacterial Proteins</subject><subject>beta-Lactamases - immunology</subject><subject>Biochemistry</subject><subject>Biochemistry, biophysics & molecular biology</subject><subject>Biochimie, biophysique & biologie moléculaire</subject><subject>biophysics</subject><subject>BSA, bovine serum albumin</subject><subject>Camel heavy‐chain antibodies</subject><subject>Camelids, New World</subject><subject>Camels</subject><subject>Camelus</subject><subject>CD, circular dichroism</subject><subject>CDR, complementary determining region</subject><subject>circular dichroism</subject><subject>csm, center of the spectral mass</subject><subject>Fab, Fv, scFv, and dsFv, antigen‐binding fragment, variable fragment, single‐chain variable fragment, and disulphide stabilized variable fragment of conventional antibodies, respectively</subject><subject>fluorescence</subject><subject>Fourier transform infrared spectroscopy</subject><subject>FTIR, Fourier transform infrared</subject><subject>GdmCl, guanidinium chloride</subject><subject>HEPES, N‐(2‐hydroxyethyl)piperazine‐N′‐2‐ethanesulfonic acid</subject><subject>high pressure</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Immunoglobulin Fragments - chemistry</subject><subject>Immunoglobulin Fragments - immunology</subject><subject>Immunoglobulin Fragments/chemistry/immunology</subject><subject>IPTG, isopropyl β‐D‐thiogalactopyranoside</subject><subject>IR, infrared</subject><subject>Life sciences</subject><subject>molecular biology</subject><subject>Molecular Sequence Data</subject><subject>MOPS, 3‐N‐morpholinopropanosulfonic acid</subject><subject>Muramidase - immunology</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Protein Folding</subject><subject>protein stability</subject><subject>Protein Structure, Tertiary</subject><subject>RU, resonance units</subject><subject>Sciences du vivant</subject><subject>Spectrometry, Fluorescence</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>SPR, surface plasmon resonance</subject><subject>surface plasmon resonance</subject><subject>VH, variable domain of immunoglobulin heavy chain</subject><subject>VHH, variable domain of camelid heavy‐chain antibody</subject><subject>VL, variable domain of immunoglobulin light chain</subject><issn>0961-8368</issn><issn>1469-896X</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1vFCEUhonR2LWa-Ac0c2W8mZYDDDA3JrqpH0mTNn4k3hFgmFkMM6ww22b_vbizafWiN4dDeN73HPIi9BLwGQDg820-o4xj8gitgPG2li3_-RitcMuhlpTLE_Qs518YYwaEPkUnAJIJIugKrb_5aQiu7uKo_VTpafYmdvuqT3oY3TTn6tbPm2rjh01l49THNOrZx0mHKs_a-ODn_XP0pNchuxfH8xT9-Hjxff25vrz69GX9_rK2TFBcW4pt00jnOoo7q42johdtIzWxtjEdUKMd6bjAnNHWEge4odS4hgHrCZY9PUXvFt_tzoyus2W9pIPaJj_qtFdRe_X_y-Q3aog3ilBBmeDFgCwGwbvBqZiMVzfkIDz0uzAobZVxihAuSyG8LaI3x6kp_t65PKvRZ-tC0JOLu6wEsAaAkAK-XUCbYs7J9XebAVZ_Y1LbrA4xFfT1vz-5B4-5FOB8AW59cPsHjdT116tybzAuileLotdR6SH5rD5cEAwMMAgu6R939qX-</recordid><startdate>200203</startdate><enddate>200203</enddate><creator>Dumoulin, Mireille</creator><creator>Conrath, Katja</creator><creator>Van Meirhaeghe, Annemie</creator><creator>Meersman, Filip</creator><creator>Heremans, Karel</creator><creator>Frenken, Leon G J</creator><creator>Muyldermans, Serge</creator><creator>Wyns, Lode</creator><creator>Matagne, André</creator><general>Cold Spring Harbor Laboratory Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>Q33</scope><scope>5PM</scope></search><sort><creationdate>200203</creationdate><title>Single-domain antibody fragments with high conformational stability</title><author>Dumoulin, Mireille ; Conrath, Katja ; Van Meirhaeghe, Annemie ; Meersman, Filip ; Heremans, Karel ; Frenken, Leon G J ; Muyldermans, Serge ; Wyns, Lode ; Matagne, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4730-c30c558eed30dcabe37f7958a2cc5bd13bae2d6706439c2e10533be5414f208f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>ANS, 8‐anilino‐1‐naphtalene‐sulfonic acid</topic><topic>Bacterial Proteins</topic><topic>beta-Lactamases - immunology</topic><topic>Biochemistry</topic><topic>Biochemistry, biophysics & molecular biology</topic><topic>Biochimie, biophysique & biologie moléculaire</topic><topic>biophysics</topic><topic>BSA, bovine serum albumin</topic><topic>Camel heavy‐chain antibodies</topic><topic>Camelids, New World</topic><topic>Camels</topic><topic>Camelus</topic><topic>CD, circular dichroism</topic><topic>CDR, complementary determining region</topic><topic>circular dichroism</topic><topic>csm, center of the spectral mass</topic><topic>Fab, Fv, scFv, and dsFv, antigen‐binding fragment, variable fragment, single‐chain variable fragment, and disulphide stabilized variable fragment of conventional antibodies, respectively</topic><topic>fluorescence</topic><topic>Fourier transform infrared spectroscopy</topic><topic>FTIR, Fourier transform infrared</topic><topic>GdmCl, guanidinium chloride</topic><topic>HEPES, N‐(2‐hydroxyethyl)piperazine‐N′‐2‐ethanesulfonic acid</topic><topic>high pressure</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Immunoglobulin Fragments - chemistry</topic><topic>Immunoglobulin Fragments - immunology</topic><topic>Immunoglobulin Fragments/chemistry/immunology</topic><topic>IPTG, isopropyl β‐D‐thiogalactopyranoside</topic><topic>IR, infrared</topic><topic>Life sciences</topic><topic>molecular biology</topic><topic>Molecular Sequence Data</topic><topic>MOPS, 3‐N‐morpholinopropanosulfonic acid</topic><topic>Muramidase - immunology</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Protein Folding</topic><topic>protein stability</topic><topic>Protein Structure, Tertiary</topic><topic>RU, resonance units</topic><topic>Sciences du vivant</topic><topic>Spectrometry, Fluorescence</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>SPR, surface plasmon resonance</topic><topic>surface plasmon resonance</topic><topic>VH, variable domain of immunoglobulin heavy chain</topic><topic>VHH, variable domain of camelid heavy‐chain antibody</topic><topic>VL, variable domain of immunoglobulin light chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumoulin, Mireille</creatorcontrib><creatorcontrib>Conrath, Katja</creatorcontrib><creatorcontrib>Van Meirhaeghe, Annemie</creatorcontrib><creatorcontrib>Meersman, Filip</creatorcontrib><creatorcontrib>Heremans, Karel</creatorcontrib><creatorcontrib>Frenken, Leon G J</creatorcontrib><creatorcontrib>Muyldermans, Serge</creatorcontrib><creatorcontrib>Wyns, Lode</creatorcontrib><creatorcontrib>Matagne, André</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumoulin, Mireille</au><au>Conrath, Katja</au><au>Van Meirhaeghe, Annemie</au><au>Meersman, Filip</au><au>Heremans, Karel</au><au>Frenken, Leon G J</au><au>Muyldermans, Serge</au><au>Wyns, Lode</au><au>Matagne, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-domain antibody fragments with high conformational stability</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2002-03</date><risdate>2002</risdate><volume>11</volume><issue>3</issue><spage>500</spage><epage>15</epage><pages>500-15</pages><issn>0961-8368</issn><issn>1469-896X</issn><eissn>1469-896X</eissn><abstract>A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived from camelid heavy‐chain antibodies with specificities for lysozymes, β‐lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical‐induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two‐state mechanism (N⇋U), where only the native and the denatured states are significantly populated. Thermally‐induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat‐induced denaturation (apparent Tm = 60–80°C), and display high conformational stabilities (ΔG(H2O) = 30–60 kJ mole−1). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy‐chain antibody fragments are of special interest for biotechnological and medical applications.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>11847273</pmid><doi>10.1110/ps.34602</doi><tpages>-484</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2002-03, Vol.11 (3), p.500-15 |
issn | 0961-8368 1469-896X 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2373476 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals ANS, 8‐anilino‐1‐naphtalene‐sulfonic acid Bacterial Proteins beta-Lactamases - immunology Biochemistry Biochemistry, biophysics & molecular biology Biochimie, biophysique & biologie moléculaire biophysics BSA, bovine serum albumin Camel heavy‐chain antibodies Camelids, New World Camels Camelus CD, circular dichroism CDR, complementary determining region circular dichroism csm, center of the spectral mass Fab, Fv, scFv, and dsFv, antigen‐binding fragment, variable fragment, single‐chain variable fragment, and disulphide stabilized variable fragment of conventional antibodies, respectively fluorescence Fourier transform infrared spectroscopy FTIR, Fourier transform infrared GdmCl, guanidinium chloride HEPES, N‐(2‐hydroxyethyl)piperazine‐N′‐2‐ethanesulfonic acid high pressure Hot Temperature Humans Immunoglobulin Fragments - chemistry Immunoglobulin Fragments - immunology Immunoglobulin Fragments/chemistry/immunology IPTG, isopropyl β‐D‐thiogalactopyranoside IR, infrared Life sciences molecular biology Molecular Sequence Data MOPS, 3‐N‐morpholinopropanosulfonic acid Muramidase - immunology Protein Conformation Protein Denaturation Protein Folding protein stability Protein Structure, Tertiary RU, resonance units Sciences du vivant Spectrometry, Fluorescence Spectroscopy, Fourier Transform Infrared SPR, surface plasmon resonance surface plasmon resonance VH, variable domain of immunoglobulin heavy chain VHH, variable domain of camelid heavy‐chain antibody VL, variable domain of immunoglobulin light chain |
title | Single-domain antibody fragments with high conformational stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-domain%20antibody%20fragments%20with%20high%20conformational%20stability&rft.jtitle=Protein%20science&rft.au=Dumoulin,%20Mireille&rft.date=2002-03&rft.volume=11&rft.issue=3&rft.spage=500&rft.epage=15&rft.pages=500-15&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1110/ps.34602&rft_dat=%3Cproquest_pubme%3E71451122%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71451122&rft_id=info:pmid/11847273&rfr_iscdi=true |