Cleavage of Mcd1 by caspase-like protease Esp1 promotes apoptosis in budding yeast
Over the last decade, yeast has been used successfully as a model system for studying the molecular mechanism of apoptotic cell death. Here, we report that Mcd1, the yeast homology of human cohesin Rad21, plays an important role in hydrogen peroxide-induced apoptosis in yeast. On induction of cell d...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2008-05, Vol.19 (5), p.2127-2134 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the last decade, yeast has been used successfully as a model system for studying the molecular mechanism of apoptotic cell death. Here, we report that Mcd1, the yeast homology of human cohesin Rad21, plays an important role in hydrogen peroxide-induced apoptosis in yeast. On induction of cell death, Mcd1 is cleaved and the C-terminal fragment is translocated from nucleus into mitochondria, causing the decrease of mitochondrial membrane potential and the amplification of cell death in a cytochrome c-dependent manner. We further demonstrate that the caspase-like protease Esp1 has dual functions and that it is responsible for the cleavage of Mcd1 during the hydrogen peroxide-induced apoptosis. When apoptosis is induced, Esp1 is released from the anaphase inhibitor Pds1. The activated Esp1 acts as caspase-like protease for the cleavage of Mcd1, which enhances the cell death via its translocation from nucleus to mitochondria. |
---|---|
ISSN: | 1059-1524 1939-4586 1939-4586 |
DOI: | 10.1091/mbc.e07-11-1113 |