Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle
The molecular events by which eccentric muscle contractions induce muscle damage and remodelling remain largely unknown. We assessed whether eccentric exercise modulates the expression of proteinases (calpains 1, 2 and 3, proteasome, cathepsin B+L), muscle structural proteins (α-sarcoglycan and des...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2002-08, Vol.543 (1), p.297-306 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The molecular events by which eccentric muscle contractions induce muscle damage and remodelling remain largely unknown. We
assessed whether eccentric exercise modulates the expression of proteinases (calpains 1, 2 and 3, proteasome, cathepsin B+L),
muscle structural proteins (α-sarcoglycan and desmin), and the expression of the heat shock proteins Hsp27 and αB-crystallin.
Vastus lateralis muscle biopsies from twelve healthy male volunteers were obtained before, immediately after, and 1 and 14
days after a 30 min downhill treadmill running exercise. Eccentric exercise induced muscle damage as evidenced by the analysis
of muscle pain and weakness, creatine kinase serum activity, myoglobinaemia and ultrastructural analysis of muscle biopsies.
The calpain 3 mRNA level was decreased immediately after exercise whereas calpain 2 mRNA level was increased at day 1. Both
mRNA levels returned to control values by day 14. By contrast, cathepsin B+L and proteasome enzyme activities were increased
at day 14. The α-sarcoglycan protein level was decreased immediately after exercise and at day 1, whereas the desmin level
peaked at day 14. αB-crystallin and Hsp27 protein levels were increased at days 1 and 14. Our results suggest that the differential
expression of calpain 2 and 3 mRNA levels may be important in the process of exercise-induced muscle damage, whereas expression
of α-sarcoglycan, desmin, αB-crystallin and Hsp27 may be essentially involved in the subsequent remodelling of myofibrillar
structure. This remodelling response may limit the extent of muscle damage upon a subsequent mechanical stress. |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.2002.018689 |