The Breast Cancer-Associated Stromelysin-3 Gene Is Expressed during Mouse Mammary Gland Apoptosis

We have cloned from a mouse placenta cDNA library a mouse homologue of the human stromelysin-3 (ST3) cDNA, which codes for a putative matrix metalloproteinase expressed in breast carcinomas. The ST3 protein is well conserved between humans and mice, and the pattern of ST3 gene expression is similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 1992-11, Vol.119 (4), p.997-1002
Hauptverfasser: Lefebvre, Olivier, Wolf, Catherine, Limacher, Jean-Marc, Hutin, Pascal, Wendling, Corinne, LeMeur, Mariane, Basset, Paul, Rio, Marie-Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have cloned from a mouse placenta cDNA library a mouse homologue of the human stromelysin-3 (ST3) cDNA, which codes for a putative matrix metalloproteinase expressed in breast carcinomas. The ST3 protein is well conserved between humans and mice, and the pattern of ST3 gene expression is similar in both species, and shows expression in the placenta, in the uterus, and during limb bud morphogenesis. We show that the ST3 gene can also be expressed in the normal mouse mammary gland. ST3 gene expression was not detected during mammary growth, neither in virgin nor in pregnant mice, but was specifically observed during postlactating involution of the gland, an apoptotic process associated with intense extracellular matrix remodeling. ST3 transcripts were found in fibroblasts immediately surrounding degenerative ducts, suggesting that ST3 gene expression may be associated with the basement membrane dissolution, which occurs during mammary gland involution. Since the ST3 gene is also specifically expressed in fibroblastic cells surrounding invasive neoplastic cells of breast carcinomas, we suggest that ST3 is implicated in extracellular matrix remodeling processes common to mammary apoptosis and breast cancer progression.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.119.4.997