Retraining the injured spinal cord

The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2001-05, Vol.533 (1), p.15-22
Hauptverfasser: Edgerton, V. R., Leon, R. D., Harkema, S. J., Hodgson, J. A., London, N., Reinkensmeyer, D. J., Roy, R. R., Talmadge, R. J., Tillakaratne, N. J., Timoszyk, W., Tobin, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 15
container_title The Journal of physiology
container_volume 533
creator Edgerton, V. R.
Leon, R. D.
Harkema, S. J.
Hodgson, J. A.
London, N.
Reinkensmeyer, D. J.
Roy, R. R.
Talmadge, R. J.
Tillakaratne, N. J.
Timoszyk, W.
Tobin, A.
description The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.
doi_str_mv 10.1111/j.1469-7793.2001.0015b.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2278598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70855125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5885-bd9d2de9d2fd0fbdb9bbe11a7d3ed531b531db41701f771c5da2185b47d850463</originalsourceid><addsrcrecordid>eNqNkF9r2zAUxUVZadOu36AMs4e92dWVrEpmMBhl_UehY2TPF8mSYwXHzqRkbb595SZk3VsFV3q45x6d-yMkA1pAOhfzAsrLKpey4gWjFIpUwhTPB2Syb3wgE0oZy7kUcExOYpwnEadVdUSOAbgAStWEfP7lVkH73vezbNW6zPfzdXA2i0vf6y6rh2A_ksNGd9Gd7d5T8vv6x_TqNn94vLm7-v6Q10IpkRtbWWZduhpLG2NNZYwD0NJyZwUHk8qaEiSFRkqohdUMlDCltErQ8pKfkm9b3-XaLJytXZ-SdbgMfqHDBgft8f9O71ucDX-RMalEpZLBl51BGP6sXVzhwsfadZ3u3bCOKKkSAphIQrUV1mGIMbhm_wlQHAHjHEeOOHLEETC-AsbnNPrpbch_gzuiSfB1K3jyndu82xin9z9hTHa-ne511JjWjKOqpACsfEW027D1s_bJB4fLdhP9EIfau9UGBecImHxeAKq4oAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70855125</pqid></control><display><type>article</type><title>Retraining the injured spinal cord</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>NASA Technical Reports Server</source><source>PubMed Central</source><creator>Edgerton, V. R. ; Leon, R. D. ; Harkema, S. J. ; Hodgson, J. A. ; London, N. ; Reinkensmeyer, D. J. ; Roy, R. R. ; Talmadge, R. J. ; Tillakaratne, N. J. ; Timoszyk, W. ; Tobin, A.</creator><creatorcontrib>Edgerton, V. R. ; Leon, R. D. ; Harkema, S. J. ; Hodgson, J. A. ; London, N. ; Reinkensmeyer, D. J. ; Roy, R. R. ; Talmadge, R. J. ; Tillakaratne, N. J. ; Timoszyk, W. ; Tobin, A.</creatorcontrib><description>The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1111/j.1469-7793.2001.0015b.x</identifier><identifier>PMID: 11351008</identifier><language>eng</language><publisher>Legacy CDMS: The Physiological Society</publisher><subject>Animals ; Behavioral Sciences ; Biomechanical Phenomena ; Recovery of Function - physiology ; Space life sciences ; Spinal Cord Injuries - physiopathology ; Spinal Cord Injuries - rehabilitation ; Topical Review</subject><ispartof>The Journal of physiology, 2001-05, Vol.533 (1), p.15-22</ispartof><rights>2001 The Journal of Physiology © 2001 The Physiological Society</rights><rights>The Physiological Society 2001 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5885-bd9d2de9d2fd0fbdb9bbe11a7d3ed531b531db41701f771c5da2185b47d850463</citedby><cites>FETCH-LOGICAL-c5885-bd9d2de9d2fd0fbdb9bbe11a7d3ed531b531db41701f771c5da2185b47d850463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278598/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278598/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11351008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Edgerton, V. R.</creatorcontrib><creatorcontrib>Leon, R. D.</creatorcontrib><creatorcontrib>Harkema, S. J.</creatorcontrib><creatorcontrib>Hodgson, J. A.</creatorcontrib><creatorcontrib>London, N.</creatorcontrib><creatorcontrib>Reinkensmeyer, D. J.</creatorcontrib><creatorcontrib>Roy, R. R.</creatorcontrib><creatorcontrib>Talmadge, R. J.</creatorcontrib><creatorcontrib>Tillakaratne, N. J.</creatorcontrib><creatorcontrib>Timoszyk, W.</creatorcontrib><creatorcontrib>Tobin, A.</creatorcontrib><title>Retraining the injured spinal cord</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.</description><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biomechanical Phenomena</subject><subject>Recovery of Function - physiology</subject><subject>Space life sciences</subject><subject>Spinal Cord Injuries - physiopathology</subject><subject>Spinal Cord Injuries - rehabilitation</subject><subject>Topical Review</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><recordid>eNqNkF9r2zAUxUVZadOu36AMs4e92dWVrEpmMBhl_UehY2TPF8mSYwXHzqRkbb595SZk3VsFV3q45x6d-yMkA1pAOhfzAsrLKpey4gWjFIpUwhTPB2Syb3wgE0oZy7kUcExOYpwnEadVdUSOAbgAStWEfP7lVkH73vezbNW6zPfzdXA2i0vf6y6rh2A_ksNGd9Gd7d5T8vv6x_TqNn94vLm7-v6Q10IpkRtbWWZduhpLG2NNZYwD0NJyZwUHk8qaEiSFRkqohdUMlDCltErQ8pKfkm9b3-XaLJytXZ-SdbgMfqHDBgft8f9O71ucDX-RMalEpZLBl51BGP6sXVzhwsfadZ3u3bCOKKkSAphIQrUV1mGIMbhm_wlQHAHjHEeOOHLEETC-AsbnNPrpbch_gzuiSfB1K3jyndu82xin9z9hTHa-ne511JjWjKOqpACsfEW027D1s_bJB4fLdhP9EIfau9UGBecImHxeAKq4oAs</recordid><startdate>20010515</startdate><enddate>20010515</enddate><creator>Edgerton, V. R.</creator><creator>Leon, R. D.</creator><creator>Harkema, S. J.</creator><creator>Hodgson, J. A.</creator><creator>London, N.</creator><creator>Reinkensmeyer, D. J.</creator><creator>Roy, R. R.</creator><creator>Talmadge, R. J.</creator><creator>Tillakaratne, N. J.</creator><creator>Timoszyk, W.</creator><creator>Tobin, A.</creator><general>The Physiological Society</general><general>Blackwell Science Ltd</general><general>Blackwell Science Inc</general><scope>CYE</scope><scope>CYI</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010515</creationdate><title>Retraining the injured spinal cord</title><author>Edgerton, V. R. ; Leon, R. D. ; Harkema, S. J. ; Hodgson, J. A. ; London, N. ; Reinkensmeyer, D. J. ; Roy, R. R. ; Talmadge, R. J. ; Tillakaratne, N. J. ; Timoszyk, W. ; Tobin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5885-bd9d2de9d2fd0fbdb9bbe11a7d3ed531b531db41701f771c5da2185b47d850463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biomechanical Phenomena</topic><topic>Recovery of Function - physiology</topic><topic>Space life sciences</topic><topic>Spinal Cord Injuries - physiopathology</topic><topic>Spinal Cord Injuries - rehabilitation</topic><topic>Topical Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edgerton, V. R.</creatorcontrib><creatorcontrib>Leon, R. D.</creatorcontrib><creatorcontrib>Harkema, S. J.</creatorcontrib><creatorcontrib>Hodgson, J. A.</creatorcontrib><creatorcontrib>London, N.</creatorcontrib><creatorcontrib>Reinkensmeyer, D. J.</creatorcontrib><creatorcontrib>Roy, R. R.</creatorcontrib><creatorcontrib>Talmadge, R. J.</creatorcontrib><creatorcontrib>Tillakaratne, N. J.</creatorcontrib><creatorcontrib>Timoszyk, W.</creatorcontrib><creatorcontrib>Tobin, A.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edgerton, V. R.</au><au>Leon, R. D.</au><au>Harkema, S. J.</au><au>Hodgson, J. A.</au><au>London, N.</au><au>Reinkensmeyer, D. J.</au><au>Roy, R. R.</au><au>Talmadge, R. J.</au><au>Tillakaratne, N. J.</au><au>Timoszyk, W.</au><au>Tobin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retraining the injured spinal cord</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2001-05-15</date><risdate>2001</risdate><volume>533</volume><issue>1</issue><spage>15</spage><epage>22</epage><pages>15-22</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.</abstract><cop>Legacy CDMS</cop><pub>The Physiological Society</pub><pmid>11351008</pmid><doi>10.1111/j.1469-7793.2001.0015b.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2001-05, Vol.533 (1), p.15-22
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2278598
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals; NASA Technical Reports Server; PubMed Central
subjects Animals
Behavioral Sciences
Biomechanical Phenomena
Recovery of Function - physiology
Space life sciences
Spinal Cord Injuries - physiopathology
Spinal Cord Injuries - rehabilitation
Topical Review
title Retraining the injured spinal cord
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retraining%20the%20injured%20spinal%20cord&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Edgerton,%20V.%20R.&rft.date=2001-05-15&rft.volume=533&rft.issue=1&rft.spage=15&rft.epage=22&rft.pages=15-22&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1111/j.1469-7793.2001.0015b.x&rft_dat=%3Cproquest_pubme%3E70855125%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70855125&rft_id=info:pmid/11351008&rfr_iscdi=true