Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels
Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized tha...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 2007-10, Vol.584 (2), p.565-582 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 582 |
---|---|
container_issue | 2 |
container_start_page | 565 |
container_title | The Journal of physiology |
container_volume | 584 |
creator | Kasten, Michael R. Rudy, Bernardo Anderson, Matthew P. |
description | Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical
neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating
thalamic firing rates. We hypothesized that different K + and Ca 2+ channel subtypes control different stimulusâresponse curve properties. To define the channels, we measured firing rate while
pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K + channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in
the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased
firing rates to threshold stimuli by reducing the membrane potential where action potentials fire ( V th ). Inhibiting SK Ca 2+ -activated K + channels with apamin robustly increased gain (slope of the stimulusâresponse curve) and maximum firing rate, with minimum
effects on threshold responses. Inhibiting N-type Ca 2+ channels with Ï-conotoxin GVIA or Ï-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca 2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results
show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission
and that each channel subtype controls a different stimulusâresponse curve property. Differential regulation of threshold,
gain and maximum firing rate may help vary the stimulusâresponse properties across and within thalamic nuclei, normalize responses
to diverse sensory inputs, and underlie sensory perception disorders. |
doi_str_mv | 10.1113/jphysiol.2007.141135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2277158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68402214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5196-f3a373af9ce310c0f23273eb2152ce2e564272e7396e9d83e948cd99be881f0d3</originalsourceid><addsrcrecordid>eNqNkctu1DAUhiMEokPhDRDyCjbN4EscxxskVCiXVoBEWVse52TiyrEHO2mVF-nz4mmG2woW1rHP-f5fPvqL4inBa0IIe3m16-dkg1tTjMWaVLnH7xUrUtWyFEKy-8UKY0pLJjg5Kh6ldIUxYVjKh8UREaLOh6-K2ze26yCCH612KMJ2cnq0waPQIW3ubrswHsadjdZvkfVIt5Mb0TDlN6Cx104PwYQ4WpMxD1MMPqHNjM6v2Zqe5EJOkPYt-nq-t9Mp2Wm4a3wqx3kHKMvMvmV67T249Lh40GmX4MmhHhffzt5enr4vLz6_-3D6-qI0nMi67JhmgulOGmAEG9xRRgWDDSWcGqDA64oKCoLJGmTbMJBVY1opN9A0pMMtOy5eLb67aTNAa_KiUTu1i3bQcVZBW_X3xNtebcO1olQIwpts8PxgEMP3CdKoBpsMOKc9hCmpuqlyCKT6J0gxp03NaAarBTQxpBSh-_UbgtU-efUzebVPXi3JZ9mzPzf5LTpEnQG5ADfWwfxfpury4xfKaZ21LxZtb7f9jY2gFjoFY2GcFW8qRRWvOfsBLVLPSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20528632</pqid></control><display><type>article</type><title>Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kasten, Michael R. ; Rudy, Bernardo ; Anderson, Matthew P.</creator><creatorcontrib>Kasten, Michael R. ; Rudy, Bernardo ; Anderson, Matthew P.</creatorcontrib><description>Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical
neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating
thalamic firing rates. We hypothesized that different K + and Ca 2+ channel subtypes control different stimulusâresponse curve properties. To define the channels, we measured firing rate while
pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K + channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in
the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased
firing rates to threshold stimuli by reducing the membrane potential where action potentials fire ( V th ). Inhibiting SK Ca 2+ -activated K + channels with apamin robustly increased gain (slope of the stimulusâresponse curve) and maximum firing rate, with minimum
effects on threshold responses. Inhibiting N-type Ca 2+ channels with Ï-conotoxin GVIA or Ï-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca 2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results
show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission
and that each channel subtype controls a different stimulusâresponse curve property. Differential regulation of threshold,
gain and maximum firing rate may help vary the stimulusâresponse properties across and within thalamic nuclei, normalize responses
to diverse sensory inputs, and underlie sensory perception disorders.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.141135</identifier><identifier>PMID: 17761775</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Action Potentials ; Age Factors ; Aging - metabolism ; Animals ; Calcium Channel Blockers - pharmacology ; Calcium Channels, L-Type - metabolism ; Calcium Channels, N-Type - metabolism ; Calcium Channels, T-Type - genetics ; Calcium Channels, T-Type - metabolism ; Electric Stimulation ; Excitatory Postsynaptic Potentials ; KATP Channels - metabolism ; KCNQ Potassium Channels - metabolism ; Kinetics ; Large-Conductance Calcium-Activated Potassium Channels - metabolism ; Membrane Potentials ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons - drug effects ; Neurons - metabolism ; Neuroscience ; Potassium Channel Blockers - pharmacology ; Sensation - physiology ; Sensory Thresholds ; Shaker Superfamily of Potassium Channels - antagonists & inhibitors ; Shaker Superfamily of Potassium Channels - metabolism ; Shaw Potassium Channels - antagonists & inhibitors ; Shaw Potassium Channels - deficiency ; Shaw Potassium Channels - genetics ; Shaw Potassium Channels - metabolism ; Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors ; Small-Conductance Calcium-Activated Potassium Channels - metabolism ; Thalamus - cytology ; Thalamus - drug effects ; Thalamus - metabolism</subject><ispartof>The Journal of physiology, 2007-10, Vol.584 (2), p.565-582</ispartof><rights>2007 The Journal of Physiology © 2007 The Physiological Society</rights><rights>2007 The Authors. Journal compilation © 2007 The Physiological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5196-f3a373af9ce310c0f23273eb2152ce2e564272e7396e9d83e948cd99be881f0d3</citedby><cites>FETCH-LOGICAL-c5196-f3a373af9ce310c0f23273eb2152ce2e564272e7396e9d83e948cd99be881f0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277158/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277158/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17761775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasten, Michael R.</creatorcontrib><creatorcontrib>Rudy, Bernardo</creatorcontrib><creatorcontrib>Anderson, Matthew P.</creatorcontrib><title>Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical
neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating
thalamic firing rates. We hypothesized that different K + and Ca 2+ channel subtypes control different stimulusâresponse curve properties. To define the channels, we measured firing rate while
pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K + channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in
the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased
firing rates to threshold stimuli by reducing the membrane potential where action potentials fire ( V th ). Inhibiting SK Ca 2+ -activated K + channels with apamin robustly increased gain (slope of the stimulusâresponse curve) and maximum firing rate, with minimum
effects on threshold responses. Inhibiting N-type Ca 2+ channels with Ï-conotoxin GVIA or Ï-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca 2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results
show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission
and that each channel subtype controls a different stimulusâresponse curve property. Differential regulation of threshold,
gain and maximum firing rate may help vary the stimulusâresponse properties across and within thalamic nuclei, normalize responses
to diverse sensory inputs, and underlie sensory perception disorders.</description><subject>Action Potentials</subject><subject>Age Factors</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Calcium Channels, N-Type - metabolism</subject><subject>Calcium Channels, T-Type - genetics</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Electric Stimulation</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>KATP Channels - metabolism</subject><subject>KCNQ Potassium Channels - metabolism</subject><subject>Kinetics</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Membrane Potentials</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neuroscience</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Sensation - physiology</subject><subject>Sensory Thresholds</subject><subject>Shaker Superfamily of Potassium Channels - antagonists & inhibitors</subject><subject>Shaker Superfamily of Potassium Channels - metabolism</subject><subject>Shaw Potassium Channels - antagonists & inhibitors</subject><subject>Shaw Potassium Channels - deficiency</subject><subject>Shaw Potassium Channels - genetics</subject><subject>Shaw Potassium Channels - metabolism</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Thalamus - cytology</subject><subject>Thalamus - drug effects</subject><subject>Thalamus - metabolism</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhiMEokPhDRDyCjbN4EscxxskVCiXVoBEWVse52TiyrEHO2mVF-nz4mmG2woW1rHP-f5fPvqL4inBa0IIe3m16-dkg1tTjMWaVLnH7xUrUtWyFEKy-8UKY0pLJjg5Kh6ldIUxYVjKh8UREaLOh6-K2ze26yCCH612KMJ2cnq0waPQIW3ubrswHsadjdZvkfVIt5Mb0TDlN6Cx104PwYQ4WpMxD1MMPqHNjM6v2Zqe5EJOkPYt-nq-t9Mp2Wm4a3wqx3kHKMvMvmV67T249Lh40GmX4MmhHhffzt5enr4vLz6_-3D6-qI0nMi67JhmgulOGmAEG9xRRgWDDSWcGqDA64oKCoLJGmTbMJBVY1opN9A0pMMtOy5eLb67aTNAa_KiUTu1i3bQcVZBW_X3xNtebcO1olQIwpts8PxgEMP3CdKoBpsMOKc9hCmpuqlyCKT6J0gxp03NaAarBTQxpBSh-_UbgtU-efUzebVPXi3JZ9mzPzf5LTpEnQG5ADfWwfxfpury4xfKaZ21LxZtb7f9jY2gFjoFY2GcFW8qRRWvOfsBLVLPSA</recordid><startdate>20071015</startdate><enddate>20071015</enddate><creator>Kasten, Michael R.</creator><creator>Rudy, Bernardo</creator><creator>Anderson, Matthew P.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071015</creationdate><title>Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels</title><author>Kasten, Michael R. ; Rudy, Bernardo ; Anderson, Matthew P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5196-f3a373af9ce310c0f23273eb2152ce2e564272e7396e9d83e948cd99be881f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials</topic><topic>Age Factors</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Calcium Channels, N-Type - metabolism</topic><topic>Calcium Channels, T-Type - genetics</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Electric Stimulation</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>KATP Channels - metabolism</topic><topic>KCNQ Potassium Channels - metabolism</topic><topic>Kinetics</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Membrane Potentials</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neuroscience</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Sensation - physiology</topic><topic>Sensory Thresholds</topic><topic>Shaker Superfamily of Potassium Channels - antagonists & inhibitors</topic><topic>Shaker Superfamily of Potassium Channels - metabolism</topic><topic>Shaw Potassium Channels - antagonists & inhibitors</topic><topic>Shaw Potassium Channels - deficiency</topic><topic>Shaw Potassium Channels - genetics</topic><topic>Shaw Potassium Channels - metabolism</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Thalamus - cytology</topic><topic>Thalamus - drug effects</topic><topic>Thalamus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasten, Michael R.</creatorcontrib><creatorcontrib>Rudy, Bernardo</creatorcontrib><creatorcontrib>Anderson, Matthew P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasten, Michael R.</au><au>Rudy, Bernardo</au><au>Anderson, Matthew P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2007-10-15</date><risdate>2007</risdate><volume>584</volume><issue>2</issue><spage>565</spage><epage>582</epage><pages>565-582</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical
neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating
thalamic firing rates. We hypothesized that different K + and Ca 2+ channel subtypes control different stimulusâresponse curve properties. To define the channels, we measured firing rate while
pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K + channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in
the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased
firing rates to threshold stimuli by reducing the membrane potential where action potentials fire ( V th ). Inhibiting SK Ca 2+ -activated K + channels with apamin robustly increased gain (slope of the stimulusâresponse curve) and maximum firing rate, with minimum
effects on threshold responses. Inhibiting N-type Ca 2+ channels with Ï-conotoxin GVIA or Ï-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca 2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results
show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission
and that each channel subtype controls a different stimulusâresponse curve property. Differential regulation of threshold,
gain and maximum firing rate may help vary the stimulusâresponse properties across and within thalamic nuclei, normalize responses
to diverse sensory inputs, and underlie sensory perception disorders.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>17761775</pmid><doi>10.1113/jphysiol.2007.141135</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2007-10, Vol.584 (2), p.565-582 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2277158 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Action Potentials Age Factors Aging - metabolism Animals Calcium Channel Blockers - pharmacology Calcium Channels, L-Type - metabolism Calcium Channels, N-Type - metabolism Calcium Channels, T-Type - genetics Calcium Channels, T-Type - metabolism Electric Stimulation Excitatory Postsynaptic Potentials KATP Channels - metabolism KCNQ Potassium Channels - metabolism Kinetics Large-Conductance Calcium-Activated Potassium Channels - metabolism Membrane Potentials Mice Mice, Inbred C57BL Mice, Knockout Neurons - drug effects Neurons - metabolism Neuroscience Potassium Channel Blockers - pharmacology Sensation - physiology Sensory Thresholds Shaker Superfamily of Potassium Channels - antagonists & inhibitors Shaker Superfamily of Potassium Channels - metabolism Shaw Potassium Channels - antagonists & inhibitors Shaw Potassium Channels - deficiency Shaw Potassium Channels - genetics Shaw Potassium Channels - metabolism Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors Small-Conductance Calcium-Activated Potassium Channels - metabolism Thalamus - cytology Thalamus - drug effects Thalamus - metabolism |
title | Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20regulation%20of%20action%20potential%20firing%20in%20adult%20murine%20thalamocortical%20neurons%20by%20Kv3.2,%20Kv1,%20and%20SK%20potassium%20and%20N-type%20calcium%20channels&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Kasten,%20Michael%20R.&rft.date=2007-10-15&rft.volume=584&rft.issue=2&rft.spage=565&rft.epage=582&rft.pages=565-582&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.141135&rft_dat=%3Cproquest_pubme%3E68402214%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20528632&rft_id=info:pmid/17761775&rfr_iscdi=true |