Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels

Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2007-10, Vol.584 (2), p.565-582
Hauptverfasser: Kasten, Michael R., Rudy, Bernardo, Anderson, Matthew P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 582
container_issue 2
container_start_page 565
container_title The Journal of physiology
container_volume 584
creator Kasten, Michael R.
Rudy, Bernardo
Anderson, Matthew P.
description Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized that different K + and Ca 2+ channel subtypes control different stimulus–response curve properties. To define the channels, we measured firing rate while pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K + channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased firing rates to threshold stimuli by reducing the membrane potential where action potentials fire ( V th ). Inhibiting SK Ca 2+ -activated K + channels with apamin robustly increased gain (slope of the stimulus–response curve) and maximum firing rate, with minimum effects on threshold responses. Inhibiting N-type Ca 2+ channels with ω-conotoxin GVIA or ω-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca 2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission and that each channel subtype controls a different stimulus–response curve property. Differential regulation of threshold, gain and maximum firing rate may help vary the stimulus–response properties across and within thalamic nuclei, normalize responses to diverse sensory inputs, and underlie sensory perception disorders.
doi_str_mv 10.1113/jphysiol.2007.141135
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2277158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68402214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5196-f3a373af9ce310c0f23273eb2152ce2e564272e7396e9d83e948cd99be881f0d3</originalsourceid><addsrcrecordid>eNqNkctu1DAUhiMEokPhDRDyCjbN4EscxxskVCiXVoBEWVse52TiyrEHO2mVF-nz4mmG2woW1rHP-f5fPvqL4inBa0IIe3m16-dkg1tTjMWaVLnH7xUrUtWyFEKy-8UKY0pLJjg5Kh6ldIUxYVjKh8UREaLOh6-K2ze26yCCH612KMJ2cnq0waPQIW3ubrswHsadjdZvkfVIt5Mb0TDlN6Cx104PwYQ4WpMxD1MMPqHNjM6v2Zqe5EJOkPYt-nq-t9Mp2Wm4a3wqx3kHKMvMvmV67T249Lh40GmX4MmhHhffzt5enr4vLz6_-3D6-qI0nMi67JhmgulOGmAEG9xRRgWDDSWcGqDA64oKCoLJGmTbMJBVY1opN9A0pMMtOy5eLb67aTNAa_KiUTu1i3bQcVZBW_X3xNtebcO1olQIwpts8PxgEMP3CdKoBpsMOKc9hCmpuqlyCKT6J0gxp03NaAarBTQxpBSh-_UbgtU-efUzebVPXi3JZ9mzPzf5LTpEnQG5ADfWwfxfpury4xfKaZ21LxZtb7f9jY2gFjoFY2GcFW8qRRWvOfsBLVLPSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20528632</pqid></control><display><type>article</type><title>Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kasten, Michael R. ; Rudy, Bernardo ; Anderson, Matthew P.</creator><creatorcontrib>Kasten, Michael R. ; Rudy, Bernardo ; Anderson, Matthew P.</creatorcontrib><description>Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized that different K + and Ca 2+ channel subtypes control different stimulus–response curve properties. To define the channels, we measured firing rate while pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K + channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased firing rates to threshold stimuli by reducing the membrane potential where action potentials fire ( V th ). Inhibiting SK Ca 2+ -activated K + channels with apamin robustly increased gain (slope of the stimulus–response curve) and maximum firing rate, with minimum effects on threshold responses. Inhibiting N-type Ca 2+ channels with ω-conotoxin GVIA or ω-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca 2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission and that each channel subtype controls a different stimulus–response curve property. Differential regulation of threshold, gain and maximum firing rate may help vary the stimulus–response properties across and within thalamic nuclei, normalize responses to diverse sensory inputs, and underlie sensory perception disorders.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2007.141135</identifier><identifier>PMID: 17761775</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Action Potentials ; Age Factors ; Aging - metabolism ; Animals ; Calcium Channel Blockers - pharmacology ; Calcium Channels, L-Type - metabolism ; Calcium Channels, N-Type - metabolism ; Calcium Channels, T-Type - genetics ; Calcium Channels, T-Type - metabolism ; Electric Stimulation ; Excitatory Postsynaptic Potentials ; KATP Channels - metabolism ; KCNQ Potassium Channels - metabolism ; Kinetics ; Large-Conductance Calcium-Activated Potassium Channels - metabolism ; Membrane Potentials ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neurons - drug effects ; Neurons - metabolism ; Neuroscience ; Potassium Channel Blockers - pharmacology ; Sensation - physiology ; Sensory Thresholds ; Shaker Superfamily of Potassium Channels - antagonists &amp; inhibitors ; Shaker Superfamily of Potassium Channels - metabolism ; Shaw Potassium Channels - antagonists &amp; inhibitors ; Shaw Potassium Channels - deficiency ; Shaw Potassium Channels - genetics ; Shaw Potassium Channels - metabolism ; Small-Conductance Calcium-Activated Potassium Channels - antagonists &amp; inhibitors ; Small-Conductance Calcium-Activated Potassium Channels - metabolism ; Thalamus - cytology ; Thalamus - drug effects ; Thalamus - metabolism</subject><ispartof>The Journal of physiology, 2007-10, Vol.584 (2), p.565-582</ispartof><rights>2007 The Journal of Physiology © 2007 The Physiological Society</rights><rights>2007 The Authors. Journal compilation © 2007 The Physiological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5196-f3a373af9ce310c0f23273eb2152ce2e564272e7396e9d83e948cd99be881f0d3</citedby><cites>FETCH-LOGICAL-c5196-f3a373af9ce310c0f23273eb2152ce2e564272e7396e9d83e948cd99be881f0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277158/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277158/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17761775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasten, Michael R.</creatorcontrib><creatorcontrib>Rudy, Bernardo</creatorcontrib><creatorcontrib>Anderson, Matthew P.</creatorcontrib><title>Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized that different K + and Ca 2+ channel subtypes control different stimulus–response curve properties. To define the channels, we measured firing rate while pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K + channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased firing rates to threshold stimuli by reducing the membrane potential where action potentials fire ( V th ). Inhibiting SK Ca 2+ -activated K + channels with apamin robustly increased gain (slope of the stimulus–response curve) and maximum firing rate, with minimum effects on threshold responses. Inhibiting N-type Ca 2+ channels with ω-conotoxin GVIA or ω-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca 2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission and that each channel subtype controls a different stimulus–response curve property. Differential regulation of threshold, gain and maximum firing rate may help vary the stimulus–response properties across and within thalamic nuclei, normalize responses to diverse sensory inputs, and underlie sensory perception disorders.</description><subject>Action Potentials</subject><subject>Age Factors</subject><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Calcium Channels, N-Type - metabolism</subject><subject>Calcium Channels, T-Type - genetics</subject><subject>Calcium Channels, T-Type - metabolism</subject><subject>Electric Stimulation</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>KATP Channels - metabolism</subject><subject>KCNQ Potassium Channels - metabolism</subject><subject>Kinetics</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Membrane Potentials</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neuroscience</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Sensation - physiology</subject><subject>Sensory Thresholds</subject><subject>Shaker Superfamily of Potassium Channels - antagonists &amp; inhibitors</subject><subject>Shaker Superfamily of Potassium Channels - metabolism</subject><subject>Shaw Potassium Channels - antagonists &amp; inhibitors</subject><subject>Shaw Potassium Channels - deficiency</subject><subject>Shaw Potassium Channels - genetics</subject><subject>Shaw Potassium Channels - metabolism</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - antagonists &amp; inhibitors</subject><subject>Small-Conductance Calcium-Activated Potassium Channels - metabolism</subject><subject>Thalamus - cytology</subject><subject>Thalamus - drug effects</subject><subject>Thalamus - metabolism</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhiMEokPhDRDyCjbN4EscxxskVCiXVoBEWVse52TiyrEHO2mVF-nz4mmG2woW1rHP-f5fPvqL4inBa0IIe3m16-dkg1tTjMWaVLnH7xUrUtWyFEKy-8UKY0pLJjg5Kh6ldIUxYVjKh8UREaLOh6-K2ze26yCCH612KMJ2cnq0waPQIW3ubrswHsadjdZvkfVIt5Mb0TDlN6Cx104PwYQ4WpMxD1MMPqHNjM6v2Zqe5EJOkPYt-nq-t9Mp2Wm4a3wqx3kHKMvMvmV67T249Lh40GmX4MmhHhffzt5enr4vLz6_-3D6-qI0nMi67JhmgulOGmAEG9xRRgWDDSWcGqDA64oKCoLJGmTbMJBVY1opN9A0pMMtOy5eLb67aTNAa_KiUTu1i3bQcVZBW_X3xNtebcO1olQIwpts8PxgEMP3CdKoBpsMOKc9hCmpuqlyCKT6J0gxp03NaAarBTQxpBSh-_UbgtU-efUzebVPXi3JZ9mzPzf5LTpEnQG5ADfWwfxfpury4xfKaZ21LxZtb7f9jY2gFjoFY2GcFW8qRRWvOfsBLVLPSA</recordid><startdate>20071015</startdate><enddate>20071015</enddate><creator>Kasten, Michael R.</creator><creator>Rudy, Bernardo</creator><creator>Anderson, Matthew P.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071015</creationdate><title>Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels</title><author>Kasten, Michael R. ; Rudy, Bernardo ; Anderson, Matthew P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5196-f3a373af9ce310c0f23273eb2152ce2e564272e7396e9d83e948cd99be881f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials</topic><topic>Age Factors</topic><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Calcium Channels, N-Type - metabolism</topic><topic>Calcium Channels, T-Type - genetics</topic><topic>Calcium Channels, T-Type - metabolism</topic><topic>Electric Stimulation</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>KATP Channels - metabolism</topic><topic>KCNQ Potassium Channels - metabolism</topic><topic>Kinetics</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Membrane Potentials</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neuroscience</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Sensation - physiology</topic><topic>Sensory Thresholds</topic><topic>Shaker Superfamily of Potassium Channels - antagonists &amp; inhibitors</topic><topic>Shaker Superfamily of Potassium Channels - metabolism</topic><topic>Shaw Potassium Channels - antagonists &amp; inhibitors</topic><topic>Shaw Potassium Channels - deficiency</topic><topic>Shaw Potassium Channels - genetics</topic><topic>Shaw Potassium Channels - metabolism</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - antagonists &amp; inhibitors</topic><topic>Small-Conductance Calcium-Activated Potassium Channels - metabolism</topic><topic>Thalamus - cytology</topic><topic>Thalamus - drug effects</topic><topic>Thalamus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasten, Michael R.</creatorcontrib><creatorcontrib>Rudy, Bernardo</creatorcontrib><creatorcontrib>Anderson, Matthew P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasten, Michael R.</au><au>Rudy, Bernardo</au><au>Anderson, Matthew P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2007-10-15</date><risdate>2007</risdate><volume>584</volume><issue>2</issue><spage>565</spage><epage>582</epage><pages>565-582</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized that different K + and Ca 2+ channel subtypes control different stimulus–response curve properties. To define the channels, we measured firing rate while pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K + channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with α-dendrotoxin or maurotoxin strongly increased firing rates to threshold stimuli by reducing the membrane potential where action potentials fire ( V th ). Inhibiting SK Ca 2+ -activated K + channels with apamin robustly increased gain (slope of the stimulus–response curve) and maximum firing rate, with minimum effects on threshold responses. Inhibiting N-type Ca 2+ channels with ω-conotoxin GVIA or ω-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca 2+ channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission and that each channel subtype controls a different stimulus–response curve property. Differential regulation of threshold, gain and maximum firing rate may help vary the stimulus–response properties across and within thalamic nuclei, normalize responses to diverse sensory inputs, and underlie sensory perception disorders.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>17761775</pmid><doi>10.1113/jphysiol.2007.141135</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2007-10, Vol.584 (2), p.565-582
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2277158
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Action Potentials
Age Factors
Aging - metabolism
Animals
Calcium Channel Blockers - pharmacology
Calcium Channels, L-Type - metabolism
Calcium Channels, N-Type - metabolism
Calcium Channels, T-Type - genetics
Calcium Channels, T-Type - metabolism
Electric Stimulation
Excitatory Postsynaptic Potentials
KATP Channels - metabolism
KCNQ Potassium Channels - metabolism
Kinetics
Large-Conductance Calcium-Activated Potassium Channels - metabolism
Membrane Potentials
Mice
Mice, Inbred C57BL
Mice, Knockout
Neurons - drug effects
Neurons - metabolism
Neuroscience
Potassium Channel Blockers - pharmacology
Sensation - physiology
Sensory Thresholds
Shaker Superfamily of Potassium Channels - antagonists & inhibitors
Shaker Superfamily of Potassium Channels - metabolism
Shaw Potassium Channels - antagonists & inhibitors
Shaw Potassium Channels - deficiency
Shaw Potassium Channels - genetics
Shaw Potassium Channels - metabolism
Small-Conductance Calcium-Activated Potassium Channels - antagonists & inhibitors
Small-Conductance Calcium-Activated Potassium Channels - metabolism
Thalamus - cytology
Thalamus - drug effects
Thalamus - metabolism
title Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20regulation%20of%20action%20potential%20firing%20in%20adult%20murine%20thalamocortical%20neurons%20by%20Kv3.2,%20Kv1,%20and%20SK%20potassium%20and%20N-type%20calcium%20channels&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Kasten,%20Michael%20R.&rft.date=2007-10-15&rft.volume=584&rft.issue=2&rft.spage=565&rft.epage=582&rft.pages=565-582&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2007.141135&rft_dat=%3Cproquest_pubme%3E68402214%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20528632&rft_id=info:pmid/17761775&rfr_iscdi=true