Stretching and unzipping nucleic acid hairpins using a synthetic nanopore

We have explored the electromechanical properties of DNA by using an electric field to force single hairpin molecules to translocate through a synthetic pore in a silicon nitride membrane. We observe a threshold voltage for translocation of the hairpin through the pore that depends sensitively on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2008-03, Vol.36 (5), p.1532-1541
Hauptverfasser: Zhao, Q, Comer, J, Dimitrov, V, Yemenicioglu, S, Aksimentiev, A, Timp, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1541
container_issue 5
container_start_page 1532
container_title Nucleic acids research
container_volume 36
creator Zhao, Q
Comer, J
Dimitrov, V
Yemenicioglu, S
Aksimentiev, A
Timp, G
description We have explored the electromechanical properties of DNA by using an electric field to force single hairpin molecules to translocate through a synthetic pore in a silicon nitride membrane. We observe a threshold voltage for translocation of the hairpin through the pore that depends sensitively on the diameter and the secondary structure of the DNA. The threshold for a diameter 1.5 < d < 2.3 nm is V > 1.5 V, which corresponds to the force required to stretch the stem of the hairpin, according to molecular dynamics simulations. On the other hand, for 1.0 < d < 1.5 nm, the threshold voltage collapses to V < 0.5 V because the stem unzips with a lower force than required for stretching. The data indicate that a synthetic nanopore can be used like a molecular gate to discriminate between the secondary structures in DNA.
doi_str_mv 10.1093/nar/gkm1017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2275135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkm1017</oup_id><sourcerecordid>1450217941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-9d4498a8df590edd0ef47d72d678186c5805519c14185e8a3f116c3d7d672c4b3</originalsourceid><addsrcrecordid>eNqF0c9vFCEUB3BibOxaPXnXiQcvZiy_YS4mplHb2MSY2sT0QigwO7SzMAJjrH-9tLPZ1pMnAu-TLw8eAC8QfIdgRw6DTofr6w2CSDwCK0Q4bmnH8WOwggSyFkEq98HTnK8gRBQx-gTsI4mhlBSvwMlZSa6YwYd1o4Nt5vDHT9PtLsxmdN402njbDNqnepqbOd_JJt-EMrhS60GHOMXknoG9Xo_ZPd-uB-D808fvR8ft6dfPJ0cfTlvDmChtZyntpJa2Zx101kLXU2EFtlxIJLlhEjKGOlNblcxJTXqEuCFWVIANvSQH4P2SO82XG2eNCyXpUU3Jb3S6UVF79W8l-EGt4y-FsWCIsBrwegmIuXiVjS_ODCaG4ExRiGNGkajozfaWFH_OLhe18dm4cdTBxTkrDBnnED9I28GrOKdQf6AayDtKJK_o7YJMijkn1-_aRVDdDlHVIartEKt--fCF93Y7tfvm4jz9J6ldoM_F_d5Rna4VF0QwdfzjQn3rIEX44oui1b9afK-j0uvkszo_wxARCKVgRFDyF3HOvYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200694386</pqid></control><display><type>article</type><title>Stretching and unzipping nucleic acid hairpins using a synthetic nanopore</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Q ; Comer, J ; Dimitrov, V ; Yemenicioglu, S ; Aksimentiev, A ; Timp, G</creator><creatorcontrib>Zhao, Q ; Comer, J ; Dimitrov, V ; Yemenicioglu, S ; Aksimentiev, A ; Timp, G ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>We have explored the electromechanical properties of DNA by using an electric field to force single hairpin molecules to translocate through a synthetic pore in a silicon nitride membrane. We observe a threshold voltage for translocation of the hairpin through the pore that depends sensitively on the diameter and the secondary structure of the DNA. The threshold for a diameter 1.5 &lt; d &lt; 2.3 nm is V &gt; 1.5 V, which corresponds to the force required to stretch the stem of the hairpin, according to molecular dynamics simulations. On the other hand, for 1.0 &lt; d &lt; 1.5 nm, the threshold voltage collapses to V &lt; 0.5 V because the stem unzips with a lower force than required for stretching. The data indicate that a synthetic nanopore can be used like a molecular gate to discriminate between the secondary structures in DNA.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkm1017</identifier><identifier>PMID: 18208842</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biochemistry &amp; Molecular Biology ; Biological Transport ; DNA - chemistry ; DNA - metabolism ; Electric Conductivity ; Membranes, Artificial ; Models, Molecular ; Nanostructures - ultrastructure ; Nucleic Acid Conformation ; Silicon Compounds - chemistry ; Structural Biology</subject><ispartof>Nucleic acids research, 2008-03, Vol.36 (5), p.1532-1541</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-9d4498a8df590edd0ef47d72d678186c5805519c14185e8a3f116c3d7d672c4b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275135/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275135/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18208842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1625417$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Q</creatorcontrib><creatorcontrib>Comer, J</creatorcontrib><creatorcontrib>Dimitrov, V</creatorcontrib><creatorcontrib>Yemenicioglu, S</creatorcontrib><creatorcontrib>Aksimentiev, A</creatorcontrib><creatorcontrib>Timp, G</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Stretching and unzipping nucleic acid hairpins using a synthetic nanopore</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>We have explored the electromechanical properties of DNA by using an electric field to force single hairpin molecules to translocate through a synthetic pore in a silicon nitride membrane. We observe a threshold voltage for translocation of the hairpin through the pore that depends sensitively on the diameter and the secondary structure of the DNA. The threshold for a diameter 1.5 &lt; d &lt; 2.3 nm is V &gt; 1.5 V, which corresponds to the force required to stretch the stem of the hairpin, according to molecular dynamics simulations. On the other hand, for 1.0 &lt; d &lt; 1.5 nm, the threshold voltage collapses to V &lt; 0.5 V because the stem unzips with a lower force than required for stretching. The data indicate that a synthetic nanopore can be used like a molecular gate to discriminate between the secondary structures in DNA.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biological Transport</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Electric Conductivity</subject><subject>Membranes, Artificial</subject><subject>Models, Molecular</subject><subject>Nanostructures - ultrastructure</subject><subject>Nucleic Acid Conformation</subject><subject>Silicon Compounds - chemistry</subject><subject>Structural Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9vFCEUB3BibOxaPXnXiQcvZiy_YS4mplHb2MSY2sT0QigwO7SzMAJjrH-9tLPZ1pMnAu-TLw8eAC8QfIdgRw6DTofr6w2CSDwCK0Q4bmnH8WOwggSyFkEq98HTnK8gRBQx-gTsI4mhlBSvwMlZSa6YwYd1o4Nt5vDHT9PtLsxmdN402njbDNqnepqbOd_JJt-EMrhS60GHOMXknoG9Xo_ZPd-uB-D808fvR8ft6dfPJ0cfTlvDmChtZyntpJa2Zx101kLXU2EFtlxIJLlhEjKGOlNblcxJTXqEuCFWVIANvSQH4P2SO82XG2eNCyXpUU3Jb3S6UVF79W8l-EGt4y-FsWCIsBrwegmIuXiVjS_ODCaG4ExRiGNGkajozfaWFH_OLhe18dm4cdTBxTkrDBnnED9I28GrOKdQf6AayDtKJK_o7YJMijkn1-_aRVDdDlHVIartEKt--fCF93Y7tfvm4jz9J6ldoM_F_d5Rna4VF0QwdfzjQn3rIEX44oui1b9afK-j0uvkszo_wxARCKVgRFDyF3HOvYg</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Zhao, Q</creator><creator>Comer, J</creator><creator>Dimitrov, V</creator><creator>Yemenicioglu, S</creator><creator>Aksimentiev, A</creator><creator>Timp, G</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20080301</creationdate><title>Stretching and unzipping nucleic acid hairpins using a synthetic nanopore</title><author>Zhao, Q ; Comer, J ; Dimitrov, V ; Yemenicioglu, S ; Aksimentiev, A ; Timp, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-9d4498a8df590edd0ef47d72d678186c5805519c14185e8a3f116c3d7d672c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biological Transport</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Electric Conductivity</topic><topic>Membranes, Artificial</topic><topic>Models, Molecular</topic><topic>Nanostructures - ultrastructure</topic><topic>Nucleic Acid Conformation</topic><topic>Silicon Compounds - chemistry</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Q</creatorcontrib><creatorcontrib>Comer, J</creatorcontrib><creatorcontrib>Dimitrov, V</creatorcontrib><creatorcontrib>Yemenicioglu, S</creatorcontrib><creatorcontrib>Aksimentiev, A</creatorcontrib><creatorcontrib>Timp, G</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Q</au><au>Comer, J</au><au>Dimitrov, V</au><au>Yemenicioglu, S</au><au>Aksimentiev, A</au><au>Timp, G</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretching and unzipping nucleic acid hairpins using a synthetic nanopore</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>36</volume><issue>5</issue><spage>1532</spage><epage>1541</epage><pages>1532-1541</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>We have explored the electromechanical properties of DNA by using an electric field to force single hairpin molecules to translocate through a synthetic pore in a silicon nitride membrane. We observe a threshold voltage for translocation of the hairpin through the pore that depends sensitively on the diameter and the secondary structure of the DNA. The threshold for a diameter 1.5 &lt; d &lt; 2.3 nm is V &gt; 1.5 V, which corresponds to the force required to stretch the stem of the hairpin, according to molecular dynamics simulations. On the other hand, for 1.0 &lt; d &lt; 1.5 nm, the threshold voltage collapses to V &lt; 0.5 V because the stem unzips with a lower force than required for stretching. The data indicate that a synthetic nanopore can be used like a molecular gate to discriminate between the secondary structures in DNA.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18208842</pmid><doi>10.1093/nar/gkm1017</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2008-03, Vol.36 (5), p.1532-1541
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2275135
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects BASIC BIOLOGICAL SCIENCES
Biochemistry & Molecular Biology
Biological Transport
DNA - chemistry
DNA - metabolism
Electric Conductivity
Membranes, Artificial
Models, Molecular
Nanostructures - ultrastructure
Nucleic Acid Conformation
Silicon Compounds - chemistry
Structural Biology
title Stretching and unzipping nucleic acid hairpins using a synthetic nanopore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretching%20and%20unzipping%20nucleic%20acid%20hairpins%20using%20a%20synthetic%20nanopore&rft.jtitle=Nucleic%20acids%20research&rft.au=Zhao,%20Q&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2008-03-01&rft.volume=36&rft.issue=5&rft.spage=1532&rft.epage=1541&rft.pages=1532-1541&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkm1017&rft_dat=%3Cproquest_pubme%3E1450217941%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200694386&rft_id=info:pmid/18208842&rft_oup_id=10.1093/nar/gkm1017&rfr_iscdi=true