Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus
The formation and recall of sensory, motor, and cognitive representations require coordinated fast communication among multiple cortical areas. Interareal projections are mainly mediated by glutamatergic pyramidal cell projections; only few long-range GABAergic connections have been reported. Using...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2007-08, Vol.27 (33), p.8790-8804 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8804 |
---|---|
container_issue | 33 |
container_start_page | 8790 |
container_title | The Journal of neuroscience |
container_volume | 27 |
creator | Jinno, Shozo Klausberger, Thomas Marton, Laszlo F Dalezios, Yannis Roberts, J. David B Fuentealba, Pablo Bushong, Eric A Henze, Darrell Buzsaki, Gyorgy Somogyi, Peter |
description | The formation and recall of sensory, motor, and cognitive representations require coordinated fast communication among multiple cortical areas. Interareal projections are mainly mediated by glutamatergic pyramidal cell projections; only few long-range GABAergic connections have been reported. Using in vivo recording and labeling of single cells and retrograde axonal tracing, we demonstrate novel long-range GABAergic projection neurons in the rat hippocampus: (1) somatostatin- and predominantly mGluR1alpha-positive neurons in stratum oriens project to the subiculum, other cortical areas, and the medial septum; (2) neurons in stratum oriens, including somatostatin-negative ones; and (3) trilaminar cells project to the subiculum and/or other cortical areas but not the septum. These three populations strongly increase their firing during sharp wave-associated ripple oscillations, communicating this network state to the septotemporal system. Finally, a large population of somatostatin-negative GABAergic cells in stratum radiatum project to the molecular layers of the subiculum, presubiculum, retrosplenial cortex, and indusium griseum and fire rhythmically at high rates during theta oscillations but do not increase their firing during ripples. The GABAergic projection axons have a larger diameter and thicker myelin sheet than those of CA1 pyramidal cells. Therefore, rhythmic IPSCs are likely to precede the arrival of excitation in cortical areas (e.g., subiculum) that receive both glutamatergic and GABAergic projections from the CA1 area. Other areas, including the retrosplenial cortex, receive only rhythmic GABAergic CA1 input. We conclude that direct GABAergic projections from the hippocampus to other cortical areas and the septum contribute to coordinating oscillatory timing across structures. |
doi_str_mv | 10.1523/JNEUROSCI.1847-07.2007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2270609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19744388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-e893dd10c6aed19de64235b07f2e23968e1673291d240b532e8167a43fde370c3</originalsourceid><addsrcrecordid>eNpVkV1P2zAUhq0JNDq2v4ByNa5S_FU7vpnUFcbHKpjYuLZc5yQ1SuJgJ1T8e1y1gnF1pHOe856PF6ETgqdkRtnZze3Fw_3d38X1lBRc5lhOKcbyE5qkqsopx-QATTCVOBdc8iP0JcZHnAhM5Gd0RKRQSggyQb9vYQy-M0127p4hRDe8ZK7LLuc_5xBqZ7Ol7-r83nQ1ZH-CfwQ7ON_FrAq-zYY1ZFeu7701bT_Gr-iwMk2Eb_t4jB5-XfxbXOXLu8vrxXyZ25niQw6FYmVJsBUGSqJKEJyy2QrLigJlShRAhGRUkTKdsZoxCkVKGM6qEpjElh2jHzvdfly1UFrohmAa3QfXmvCivXH6Y6Vza137Z03TPwRWSeD7XiD4pxHioFsXLTSN6cCPURMlOWdFkUCxA23wMQao3oYQrLc-6Dcf9NYHjaXe-pAaT_5f8b1t__gEnO6AtavXGxdAx9Y0TcKJ3mw2VGrGdCEVZq-PHpMU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19744388</pqid></control><display><type>article</type><title>Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jinno, Shozo ; Klausberger, Thomas ; Marton, Laszlo F ; Dalezios, Yannis ; Roberts, J. David B ; Fuentealba, Pablo ; Bushong, Eric A ; Henze, Darrell ; Buzsaki, Gyorgy ; Somogyi, Peter</creator><creatorcontrib>Jinno, Shozo ; Klausberger, Thomas ; Marton, Laszlo F ; Dalezios, Yannis ; Roberts, J. David B ; Fuentealba, Pablo ; Bushong, Eric A ; Henze, Darrell ; Buzsaki, Gyorgy ; Somogyi, Peter</creatorcontrib><description>The formation and recall of sensory, motor, and cognitive representations require coordinated fast communication among multiple cortical areas. Interareal projections are mainly mediated by glutamatergic pyramidal cell projections; only few long-range GABAergic connections have been reported. Using in vivo recording and labeling of single cells and retrograde axonal tracing, we demonstrate novel long-range GABAergic projection neurons in the rat hippocampus: (1) somatostatin- and predominantly mGluR1alpha-positive neurons in stratum oriens project to the subiculum, other cortical areas, and the medial septum; (2) neurons in stratum oriens, including somatostatin-negative ones; and (3) trilaminar cells project to the subiculum and/or other cortical areas but not the septum. These three populations strongly increase their firing during sharp wave-associated ripple oscillations, communicating this network state to the septotemporal system. Finally, a large population of somatostatin-negative GABAergic cells in stratum radiatum project to the molecular layers of the subiculum, presubiculum, retrosplenial cortex, and indusium griseum and fire rhythmically at high rates during theta oscillations but do not increase their firing during ripples. The GABAergic projection axons have a larger diameter and thicker myelin sheet than those of CA1 pyramidal cells. Therefore, rhythmic IPSCs are likely to precede the arrival of excitation in cortical areas (e.g., subiculum) that receive both glutamatergic and GABAergic projections from the CA1 area. Other areas, including the retrosplenial cortex, receive only rhythmic GABAergic CA1 input. We conclude that direct GABAergic projections from the hippocampus to other cortical areas and the septum contribute to coordinating oscillatory timing across structures.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1847-07.2007</identifier><identifier>PMID: 17699661</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials - physiology ; Animals ; Biotin - analogs & derivatives ; Biotin - pharmacokinetics ; Brain Mapping ; Dextrans - pharmacokinetics ; gamma-Aminobutyric Acid - metabolism ; Hippocampus - cytology ; Hippocampus - physiology ; Inhibitory Postsynaptic Potentials - drug effects ; Inhibitory Postsynaptic Potentials - physiology ; Inhibitory Postsynaptic Potentials - radiation effects ; Male ; Microscopy, Electron, Transmission - methods ; Models, Neurological ; Nerve Tissue Proteins - metabolism ; Neural Pathways - anatomy & histology ; Neural Pathways - metabolism ; Neurons - classification ; Neurons - physiology ; Neurons - ultrastructure ; Phytohemagglutinins - pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate - metabolism ; Somatostatin - metabolism ; Stilbamidines - pharmacokinetics</subject><ispartof>The Journal of neuroscience, 2007-08, Vol.27 (33), p.8790-8804</ispartof><rights>Copyright © 2007 Society for Neuroscience 0270-6474/07/278790-15$15.00/0 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-e893dd10c6aed19de64235b07f2e23968e1673291d240b532e8167a43fde370c3</citedby><cites>FETCH-LOGICAL-c594t-e893dd10c6aed19de64235b07f2e23968e1673291d240b532e8167a43fde370c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270609/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270609/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17699661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jinno, Shozo</creatorcontrib><creatorcontrib>Klausberger, Thomas</creatorcontrib><creatorcontrib>Marton, Laszlo F</creatorcontrib><creatorcontrib>Dalezios, Yannis</creatorcontrib><creatorcontrib>Roberts, J. David B</creatorcontrib><creatorcontrib>Fuentealba, Pablo</creatorcontrib><creatorcontrib>Bushong, Eric A</creatorcontrib><creatorcontrib>Henze, Darrell</creatorcontrib><creatorcontrib>Buzsaki, Gyorgy</creatorcontrib><creatorcontrib>Somogyi, Peter</creatorcontrib><title>Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The formation and recall of sensory, motor, and cognitive representations require coordinated fast communication among multiple cortical areas. Interareal projections are mainly mediated by glutamatergic pyramidal cell projections; only few long-range GABAergic connections have been reported. Using in vivo recording and labeling of single cells and retrograde axonal tracing, we demonstrate novel long-range GABAergic projection neurons in the rat hippocampus: (1) somatostatin- and predominantly mGluR1alpha-positive neurons in stratum oriens project to the subiculum, other cortical areas, and the medial septum; (2) neurons in stratum oriens, including somatostatin-negative ones; and (3) trilaminar cells project to the subiculum and/or other cortical areas but not the septum. These three populations strongly increase their firing during sharp wave-associated ripple oscillations, communicating this network state to the septotemporal system. Finally, a large population of somatostatin-negative GABAergic cells in stratum radiatum project to the molecular layers of the subiculum, presubiculum, retrosplenial cortex, and indusium griseum and fire rhythmically at high rates during theta oscillations but do not increase their firing during ripples. The GABAergic projection axons have a larger diameter and thicker myelin sheet than those of CA1 pyramidal cells. Therefore, rhythmic IPSCs are likely to precede the arrival of excitation in cortical areas (e.g., subiculum) that receive both glutamatergic and GABAergic projections from the CA1 area. Other areas, including the retrosplenial cortex, receive only rhythmic GABAergic CA1 input. We conclude that direct GABAergic projections from the hippocampus to other cortical areas and the septum contribute to coordinating oscillatory timing across structures.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biotin - analogs & derivatives</subject><subject>Biotin - pharmacokinetics</subject><subject>Brain Mapping</subject><subject>Dextrans - pharmacokinetics</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Inhibitory Postsynaptic Potentials - drug effects</subject><subject>Inhibitory Postsynaptic Potentials - physiology</subject><subject>Inhibitory Postsynaptic Potentials - radiation effects</subject><subject>Male</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Models, Neurological</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Pathways - anatomy & histology</subject><subject>Neural Pathways - metabolism</subject><subject>Neurons - classification</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Phytohemagglutinins - pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Metabotropic Glutamate - metabolism</subject><subject>Somatostatin - metabolism</subject><subject>Stilbamidines - pharmacokinetics</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkV1P2zAUhq0JNDq2v4ByNa5S_FU7vpnUFcbHKpjYuLZc5yQ1SuJgJ1T8e1y1gnF1pHOe856PF6ETgqdkRtnZze3Fw_3d38X1lBRc5lhOKcbyE5qkqsopx-QATTCVOBdc8iP0JcZHnAhM5Gd0RKRQSggyQb9vYQy-M0127p4hRDe8ZK7LLuc_5xBqZ7Ol7-r83nQ1ZH-CfwQ7ON_FrAq-zYY1ZFeu7701bT_Gr-iwMk2Eb_t4jB5-XfxbXOXLu8vrxXyZ25niQw6FYmVJsBUGSqJKEJyy2QrLigJlShRAhGRUkTKdsZoxCkVKGM6qEpjElh2jHzvdfly1UFrohmAa3QfXmvCivXH6Y6Vza137Z03TPwRWSeD7XiD4pxHioFsXLTSN6cCPURMlOWdFkUCxA23wMQao3oYQrLc-6Dcf9NYHjaXe-pAaT_5f8b1t__gEnO6AtavXGxdAx9Y0TcKJ3mw2VGrGdCEVZq-PHpMU</recordid><startdate>20070815</startdate><enddate>20070815</enddate><creator>Jinno, Shozo</creator><creator>Klausberger, Thomas</creator><creator>Marton, Laszlo F</creator><creator>Dalezios, Yannis</creator><creator>Roberts, J. David B</creator><creator>Fuentealba, Pablo</creator><creator>Bushong, Eric A</creator><creator>Henze, Darrell</creator><creator>Buzsaki, Gyorgy</creator><creator>Somogyi, Peter</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20070815</creationdate><title>Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus</title><author>Jinno, Shozo ; Klausberger, Thomas ; Marton, Laszlo F ; Dalezios, Yannis ; Roberts, J. David B ; Fuentealba, Pablo ; Bushong, Eric A ; Henze, Darrell ; Buzsaki, Gyorgy ; Somogyi, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-e893dd10c6aed19de64235b07f2e23968e1673291d240b532e8167a43fde370c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biotin - analogs & derivatives</topic><topic>Biotin - pharmacokinetics</topic><topic>Brain Mapping</topic><topic>Dextrans - pharmacokinetics</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Inhibitory Postsynaptic Potentials - drug effects</topic><topic>Inhibitory Postsynaptic Potentials - physiology</topic><topic>Inhibitory Postsynaptic Potentials - radiation effects</topic><topic>Male</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Models, Neurological</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Pathways - anatomy & histology</topic><topic>Neural Pathways - metabolism</topic><topic>Neurons - classification</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Phytohemagglutinins - pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Metabotropic Glutamate - metabolism</topic><topic>Somatostatin - metabolism</topic><topic>Stilbamidines - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jinno, Shozo</creatorcontrib><creatorcontrib>Klausberger, Thomas</creatorcontrib><creatorcontrib>Marton, Laszlo F</creatorcontrib><creatorcontrib>Dalezios, Yannis</creatorcontrib><creatorcontrib>Roberts, J. David B</creatorcontrib><creatorcontrib>Fuentealba, Pablo</creatorcontrib><creatorcontrib>Bushong, Eric A</creatorcontrib><creatorcontrib>Henze, Darrell</creatorcontrib><creatorcontrib>Buzsaki, Gyorgy</creatorcontrib><creatorcontrib>Somogyi, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jinno, Shozo</au><au>Klausberger, Thomas</au><au>Marton, Laszlo F</au><au>Dalezios, Yannis</au><au>Roberts, J. David B</au><au>Fuentealba, Pablo</au><au>Bushong, Eric A</au><au>Henze, Darrell</au><au>Buzsaki, Gyorgy</au><au>Somogyi, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2007-08-15</date><risdate>2007</risdate><volume>27</volume><issue>33</issue><spage>8790</spage><epage>8804</epage><pages>8790-8804</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The formation and recall of sensory, motor, and cognitive representations require coordinated fast communication among multiple cortical areas. Interareal projections are mainly mediated by glutamatergic pyramidal cell projections; only few long-range GABAergic connections have been reported. Using in vivo recording and labeling of single cells and retrograde axonal tracing, we demonstrate novel long-range GABAergic projection neurons in the rat hippocampus: (1) somatostatin- and predominantly mGluR1alpha-positive neurons in stratum oriens project to the subiculum, other cortical areas, and the medial septum; (2) neurons in stratum oriens, including somatostatin-negative ones; and (3) trilaminar cells project to the subiculum and/or other cortical areas but not the septum. These three populations strongly increase their firing during sharp wave-associated ripple oscillations, communicating this network state to the septotemporal system. Finally, a large population of somatostatin-negative GABAergic cells in stratum radiatum project to the molecular layers of the subiculum, presubiculum, retrosplenial cortex, and indusium griseum and fire rhythmically at high rates during theta oscillations but do not increase their firing during ripples. The GABAergic projection axons have a larger diameter and thicker myelin sheet than those of CA1 pyramidal cells. Therefore, rhythmic IPSCs are likely to precede the arrival of excitation in cortical areas (e.g., subiculum) that receive both glutamatergic and GABAergic projections from the CA1 area. Other areas, including the retrosplenial cortex, receive only rhythmic GABAergic CA1 input. We conclude that direct GABAergic projections from the hippocampus to other cortical areas and the septum contribute to coordinating oscillatory timing across structures.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>17699661</pmid><doi>10.1523/JNEUROSCI.1847-07.2007</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2007-08, Vol.27 (33), p.8790-8804 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2270609 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Action Potentials - physiology Animals Biotin - analogs & derivatives Biotin - pharmacokinetics Brain Mapping Dextrans - pharmacokinetics gamma-Aminobutyric Acid - metabolism Hippocampus - cytology Hippocampus - physiology Inhibitory Postsynaptic Potentials - drug effects Inhibitory Postsynaptic Potentials - physiology Inhibitory Postsynaptic Potentials - radiation effects Male Microscopy, Electron, Transmission - methods Models, Neurological Nerve Tissue Proteins - metabolism Neural Pathways - anatomy & histology Neural Pathways - metabolism Neurons - classification Neurons - physiology Neurons - ultrastructure Phytohemagglutinins - pharmacokinetics Rats Rats, Sprague-Dawley Receptors, Metabotropic Glutamate - metabolism Somatostatin - metabolism Stilbamidines - pharmacokinetics |
title | Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuronal%20Diversity%20in%20GABAergic%20Long-Range%20Projections%20from%20the%20Hippocampus&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Jinno,%20Shozo&rft.date=2007-08-15&rft.volume=27&rft.issue=33&rft.spage=8790&rft.epage=8804&rft.pages=8790-8804&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1847-07.2007&rft_dat=%3Cproquest_pubme%3E19744388%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19744388&rft_id=info:pmid/17699661&rfr_iscdi=true |